Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Preliminary C++ Program. Given the McLaurin series sin(x) = x-x^3/(3!) + x^5/(5!

ID: 3688908 • Letter: P

Question

Preliminary C++ Program. Given the McLaurin series sin(x) = x-x^3/(3!) + x^5/(5!)-x^7/(7!) + x^9/(9!) +... where x is in radian. cos(x) = 1 - x^2/(2!) + x^4/(4!) - x^6/(6!) + x^8/(8!) +... where x is in radian. Write two functions g(x) = sin(x) and h(x) = cos(x) using the series above to obtain accuracy to 5 decimal places. Write a C++ program that uses the functions above to calculate f(n) for integer n = 0 to 6 where Post Lab: Well documented and correct C++ program., and run output Reference: sin(x) and cos(x) programs on the course website. as always, have the instructor verify that your program work as intended.

Explanation / Answer

first:

#include <iostream>

#include <fstream>

#include <stdlib.h>

#include <cmath>

#include <iomanip>

using namespace std;

int degrees; //degrees variable

const double pi = 3.1415;

double factorialfunction (int f); //factorial function

double powerfunction(double x, int y); //power function

double sinefunction(double x); //sine series

double cosinefunction(double x); //cosine series

int main()

{

char p;

double x= 0.0;

const double pi = 3.1415;

   int degrees=x*(180)/pi; //This is the conversion factor we will use now

cout << endl << " Degrees" << "    Sine"<<"            Cosine"<<endl;

          cout << endl << "   " << 0 << "           "<< sine(0)<<"              "<< cosine(0); //display sin and cos of 0

    while (x < 0.7853) // This is the radian equivalent of 45 degrees

    {

   x = x + 0.0872664626; // This will be the radians equivalent of 5 degree increments

   degrees=x*(180/pi);//conversion to degrees

      cout << endl << "   " << degrees << "      "<< sinefunction(x)<<"        "<< cosinefunction(x);

    }

cout << endl;

cout << "Enter a character to end. ";

cin >> p;

}

//This is the factorial function:

    double factorialfunction(int x)

    {

    double fact=1.0;

    for (int i=1; i<=x; i++)

    {

    fact=fact*i;

    }

    return fact;

    }

    //This is the function for Power

    double powerfunction (double x, int y)

    {

    double power1=1.0;

    for (int i=1; i<=y; i++)

    power1=power1*x;

    return power1;

    }

    //This is the sinefunction to calculate the sin series.

    double sinefunction (double x)

    {

    double sum_of_positives = 0.0;

    double sum_of_negatives= 0.0;

    double output = 0.0;

            const double pi = 3.1415;

    for (int i=1; i<=1000; i+=4)

    {

    sum_of_positives = sum_of_positives + (powerfunction (x,i) / factorialfunction (i));

    }

    for (int i=3; i<=1000; i+=4)

    {

    sum_of_negatives = sum_of_negatives + (powerfunction (x,i) / factorialfunction (i));

    }

               output = (sum_of_positives - sum_of_negatives);

    return output;

            return degrees=x*(180)/pi;

            }

            //This is the cosine function for Cosine Series

    double cosinefunction (double x)

    {

    double sum_of_positives = 0.0;

    double sum_of_negatives= 0.0;

    double output=0.0;

            const double pi = 3.1415;

    for (int i=4; i<=1000; i+=4)

    {

sum_of_positives = sum_of_positives + (powerfunction (x,i) / factorialfunction (i));

    }

    for (int i=2; i<=1000; i+=4)

    {

sum_of_negatives = sum_of_negatives + (powerfunction (x,i) / factorialfunction (i));

    }

            output = (1 - (sum_of_negatives) + (sum_of_positives));

    return output;

            return degrees=x*(180)/pi;

            }

second:

int main()

{int term1;

char p;

double x= 0.0;

const double pi = 3.1415;

   int degrees=x*(180)/pi; //This is the conversion factor we will use now

cout << endl << " Degrees" << "    Sine"<<"            Cosine"<<endl;

          for(int i=0;i<=6;i++)

{

term1=5* sinefunction(i)*cosinefunction(4000*pi*i+pi/3); calling both the functions

cout<< term1;

}