Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

In C++ Minimum Spanning Tree DescriptioI theMinimam Spanning Tree problem, we ar

ID: 3721719 • Letter: I

Question

In C++

Minimum Spanning Tree DescriptioI theMinimam Spanning Tree problem, we are given as input an undirected graph G (V. E) together with weight u (Lu) on each edge (u,r) € E. The goal is to find a minium spanning tree for G. Recall that we learned two algorithms, Krusal's and Prim's in class. In this assignment, you are asked to implement Prim's algorithm. The following is a peeudo-code of Prim's algorithm. Initialize a min-ppriority que for all e V do Q Insert (Q.u). end for Decrease-key(Q.r,0) while Q * 0 do uExtract-Min(Q). for all e Ad[u] do if v Q and u, )

Explanation / Answer

Excutable code:

#include <stdio.h>
#include <limits.h>
#include<iostream>
using namespace std;

#define V 4

int minKey(int key[], bool mstSet[])
{

int min = INT_MAX, min_index;

for (int v = 0; v < V; v++)
if (mstSet[v] == false && key[v] < min)
min = key[v], min_index = v;

return min_index;
}


int printMST(int parent[], int n, int graph[V][V])
{
cout<<"Edge Weight ";
for (int i = 1; i < V; i++)
{
printf("%d - %d %d ", parent[i], i, graph[i][parent[i]]);
cout<<parent[i]<<" ";
  
}
  
}

void primMST(int graph[V][V])
{
int parent[V];
int key[V];
bool mstSet[V];


for (int i = 0; i < V; i++)
key[i] = INT_MAX, mstSet[i] = false;

key[0] = 0;
parent[0] = -1;

for (int count = 0; count < V-1; count++)
{

int u = minKey(key, mstSet);

mstSet[u] = true;


for (int v = 0; v < V; v++)

if (graph[u][v] && mstSet[v] == false && graph[u][v] < key[v])
parent[v] = u, key[v] = graph[u][v];
}

printMST(parent, V, graph);
}

int main()

{

int graph[V][V]={0};
int n,m,k,c;
int i,j;
cout <<"enterno of vertices";
cin >> n;
cout <<"ente no of edges";
cin >> m;
cout <<" EDGES Cost ";
for(k=1;k<=m;k++)
{
cin >>i>>j>>c;
graph[i][j]=c;
graph[j][i]=c;
}
primMST(graph);

return 0;
}