Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

CPE 327 Reservoir Engineering I HW Due Date: 3:00PM on March 13, 2018 Generate a

ID: 3727089 • Letter: C

Question

CPE 327 Reservoir Engineering I

HW

Due Date: 3:00PM on March 13, 2018

Generate a robust programming to solve the problem below. The program can be wrote by using any computer language, e.g., Matlab, C, VB, Julia, Python.

Grading:

Bring your laptop and successfully run your program to the instructor;

Be able to answer all the technical questions given by the instructor;

Be able to run other flash calculations when the conditions are changed, e.g., different composition, pressure, temperature;

Problem:

Use the Peng-Robinson equation of state to calculate the compositions and densities of the equilibrium liquid and gas of the mixture given below at 160°F and 2000 psia. Use binary interaction coefficients of 0.02 for methane-n-butane, 0.035 for methane-n-decane, and 0.0 for n-butane-n-decane.

Component

Composition, mole fraction

Methane

0.5532

n-Butane

0.2630

n-Decane

0.1838

1.0000

Compare your answer with experimental results shown below.

Component

Composition, mole fraction

liquid

gas

Methane

0.458

0.856

n-Butane

0.304

0.130

n-Decane

0.238

0.0136

1.000

0.9996

Component

Composition, mole fraction

Methane

0.5532

n-Butane

0.2630

n-Decane

0.1838

1.0000

Explanation / Answer

clear

clc

Cc=[ 0.5532 0.2630 0.1838];

C=[ 0.458 0.304 0.238];

G=[0,856 0.130 0.016];

T=800;

R=82.06;

Tr=T/C;

beta=.37464+1.54226*G-.26992*G;

delta=(1+beta.*(1-(Tr.^5))).^2;

b=((.07780)*R*C)/Cc;

a=((.45724)*R^2*C.^2)./Cc;

P=@(Vm,R,T,b,a,delta)(R*T./(Vm-b))-(a*delta)/(Vm^2+2*b*Vm-b^2);

i=1;

j=1;

k=1;

%Methane

for Vm1=90:5:1000

P1(i)=P(Vm1,R,T,b(1),a(1),delta(1));

i=i+1;

end

v1=90:5:1000;

plot(v1,P1,'DisplayName','Methane')

legend('show')

%n-Butane

for Vm2=500:5:1500

P2(j)=P(Vm2,R,T,b(2),a(2),delta(2));

j=j+1;

end

v2=500:5:1500;

figure

plot(v2,P2,'DisplayName','n-Butane')

legend('show')

%n-Decane

for Vm3=750:5:2000

P3(k)=P(Vm3,R,T,b(3),a(3),delta(3));

k=k+1;

end

v3=750:5:2000;

figure

plot(v3,P3,'DisplayName','n-Decane')

legend('show')