Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Below is the code that you can modify to solve this problem #include <stdio.h> d

ID: 3727401 • Letter: B

Question

Below is the code that you can modify to solve this problem

#include <stdio.h>

double evaluate(double p[], double x, int size) {
   double total = 0;
   int i = 0;
   double exp = 1;
   while(i < size) {
       total += p[i]*exp;
       exp *= x;
       i++;
   }
   return total;
}

int main() {
   double arr[18];
   int size, i, n;
   printf("Enter degree of the polynomial: ");
   scanf("%d", &n);
   i = 0;
   printf("Enter polynomial: ");
   while(i < n+1) {
       scanf("%lf", arr+i);
       i++;
   }
   size = i;
   printf("polynomial is %lf when x = 1 ", evaluate(arr, 1, size));
   printf("polynomial is %lf when x = 3 ", evaluate(arr, 3, size));
   printf("polynomial is %lf when x = -5 ", evaluate(arr, -5, size));
   return 0;
}

Modify your program in 1 above (or write a new C program) to accept three polynomials as in problem 2. Now, compute two new polynomials Pa and P, where P.-P, x P2 and P7=P, XA, Remember, the highest degree of the any of the polynomials that you are given is 17. You must determine what the largest degree of P6 and P can be. Now, evaluate P6(x) and P2(X) for values of x = 2, x = 5 and x = 7. Submit

Explanation / Answer

Figuring out the easiest and simplest solution.

Modifying the evaluate function with two inputs of arrays and two sizes. i.e:

double evaluate(double p1[], double p2[], double x, int size1, int size2)

{ double total = 0;
   int i = 0;
   double exp = 1;
   while(i < size1) {
       total += p1[i]*exp;
       exp *= x;
       i++;
   }

i=0;

exp=1;

while(i < size2) {
       total += p2[i]*exp;
       exp *= x;
       i++;
   }

return total;

}

Largest degree of P6 will be size1+ size2-2; and P7 will be 2*size3-2;

Now, in main program , take the input of three arrays and provide them in the given evaluate function for the respective array and sizes.

All the best,