Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Abstract In this lab you will implement recursive solutions to classic CS ques-

ID: 3730166 • Letter: A

Question

Abstract In this lab you will implement recursive solutions to classic CS ques- tions. One will be a chess problem, and the other is Towers of Hanoi. 1 Backtracking with Recursion - Featuring Chess Choose and complete one of the two following chess problems. These problems can be solved using the backtracking algorithm shown below. boolean solve(board, pos) if( pos is such that there is nothing left to solve) ( return true; for each possible choice t if(valid (choice)) mark board at pos with choice; if(solve(board, pos + 1) == true){ return true; clear any choices entered at pos on board; return false; // backtrack

Explanation / Answer

Please find below the code for the above problem. I have used N=8 (Number of Queens) in the solution. You can change N and solve the problem for any number of Queens. Thus the solution has the class name of NQueenProblem, and can be used for any general case by changing N and the chess board initialization.

import java.util.*;
import java.lang.*;
import java.io.*;


class NQueenProblem
{
    final int N = 8;

    /* A utility function to print solution */
    void printSolution(int board[][])
    {
        for (int i = 0; i < N; i++)
        {
            for (int j = 0; j < N; j++)
                System.out.print(" " + board[i][j]
                                 + " ");
            System.out.println();
        }
    }

    /* A utility function to check if a queen can
       be placed on board[row][col]. Note that this
       function is called when "col" queens are already
       placeed in columns from 0 to col -1. So we need
       to check only left side for attacking queens */
    boolean isSafe(int board[][], int row, int col)
    {
        int i, j;

        /* Check this row on left side */
        for (i = 0; i < col; i++)
            if (board[row][i] == 1)
                return false;

        /* Check upper diagonal on left side */
        for (i=row, j=col; i>=0 && j>=0; i--, j--)
            if (board[i][j] == 1)
                return false;

        /* Check lower diagonal on left side */
        for (i=row, j=col; j>=0 && i<N; i++, j--)
            if (board[i][j] == 1)
                return false;

        return true;
    }

    /* A recursive utility function to solve N
       Queen problem */
    boolean solveNQUtil(int board[][], int col)
    {
        /* base case: If all queens are placed
           then return true */
        if (col >= N)
            return true;

        /* Consider this column and try placing
           this queen in all rows one by one */
        for (int i = 0; i < N; i++)
        {
            /* Check if queen can be placed on
               board[i][col] */
            if (isSafe(board, i, col))
            {
                /* Place this queen in board[i][col] */
                board[i][col] = 1;

                /* recur to place rest of the queens */
                if (solveNQUtil(board, col + 1) == true)
                    return true;

                /* If placing queen in board[i][col]
                   doesn't lead to a solution then
                   remove queen from board[i][col] */
                board[i][col] = 0; // BACKTRACK
            }
        }

        /* If queen can not be place in any row in
           this colum col, then return false */
        return false;
    }

    /* This function solves the N Queen problem using
       Backtracking. It mainly uses solveNQUtil() to
       solve the problem. It returns false if queens
       cannot be placed, otherwise return true and
       prints placement of queens in the form of 1s.
       */
    boolean solveNQ()
    {
        int board[][] = {{0, 0, 0, 0, 0, 0, 0, 0},
            {0, 0, 0, 0, 0, 0, 0, 0},
            {0, 0, 0, 0, 0, 0, 0, 0},
            {0, 0, 0, 0, 0, 0, 0, 0},
            {0, 0, 0, 0, 0, 0, 0, 0},
            {0, 0, 0, 0, 0, 0, 0, 0},
            {0, 0, 0, 0, 0, 0, 0, 0},
            {0, 0, 0, 0, 0, 0, 0, 0}
        };

        if (solveNQUtil(board, 0) == false)
        {
            System.out.print("Solution does not exist");
            return false;
        }

        printSolution(board);
        return true;
    }

    // driver program to test above function
    public static void main(String args[])
    {
        NQueenProblem Queen = new NQueenProblem();
        Queen.solveNQ();
    }
}