Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

I. Give parse trees and derivations for each string a. a c. a+a+a b. ata Answer

ID: 3741576 • Letter: I

Question

I. Give parse trees and derivations for each string a. a c. a+a+a b. ata Answer each part for the following context-free grammar G T. a. What are the variables of G? b. What are the terminals of G c. Which is the start variable of G? d. Give three strings in L(G). e. Give three strings not in L(G) f. True or False: T = aba g. True or False: Taba. h. True or False: TT. i. True or False: T j. True or False: XXX aba. k. True or False: X l. True or False: T m. True or False: T n. True or False: SE. o. Give a description in English of aba XX. xxx L(G)

Explanation / Answer

Answer for 1

For a)

   a                                                                                                                                           explanation

   E -> T -----------------------------------------------------------------------------------------àE can be T

   -> F ------------------------------------------------------------------------------------------àT can be F

   -> a   ----------------------------------------------------------------------------------------àF can be a

For b)

a+a

   E -> E+T --------------------------------------------------------------------------------à E can be E+T

   -> T+F    --------------------------------------------------------------------------------------àE can be T and T can be F

   -> F+a     --------------------------------------------------------------------------------------àT can be F and F can be a

   -> a+a     --------------------------------------------------------------------------------------àF can be a

For c)

   a+a+a

   E -> E+T   ---------------------------------------------------------------------------------------àE can be E+T

   -> E+T+F      --------------------------------------------------------------------------------àE can be E+T and T can be F

   -> T+F+a      ---------------------------------------------------------------------àE can be T, T can be F and F can be a

   -> F+a+a       ------------------------------------------------------------------------------à T can be F and F can be a

   -> a+a+a       ----------------------------------------------------------------------------------à F can be a

d)   ((a))

   E -> T           // E can be T

   -> F           // T can be F

   -> (E)       --------------------------------------------------------------------------------------?> F can be (E)

   -> (T)       --------------------------------------------------------------------------------------?> E can be T

   -> (F)       --------------------------------------------------------------------------------------?> T can be F

   -> ((E))       --------------------------------------------------------------------------------------?> F can be (E)

   -> ((T))       --------------------------------------------------------------------------------------?> E can be T

   -> ((F))       --------------------------------------------------------------------------------------?>T can be F

   -> ((a))       --------------------------------------------------------------------------------------?> F can be a

Answer for II:

For a)

Here the    R, X, S, T are the variables

For b)

Here the terminal of g is   a,& b

For c)

Here the start variable of G is   R

For d)

three strings in L(G) is .

   R -> S -> aTb -> ab (T is replaced with epsilon)

   R -> S -> bTa -> ba (T is replaced with epsilon)

   R -> XRX -> aSb -> aaTbb -> aabb (T is replaced with epsilon)

For e)

three strings not in L(G)

   a

   b

   aa

for f)

Here T => aba

   False.

   T => XTX => aXa => aba (We had to make 3 operations)

For g)

Then T => aba with *

   True.

   * above arrow represents any number of operations. We can do it in 3 operations

For h)

T => T

   False.

   There is no such operation in grammar

For i)

T => T with *

   False

   We cannot derive T from T

For j)

XXX => aba with *

   True

   X can be a or b

For k)

X => aba with *

   False

For l)

T => XX with *

   True

   T => XTX => XX (Replace T with epsilon)

For m)

T => XXX with *

   True

   T => XTX => XXX

For n)

S => epsilon with *

   False