Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Please show the work/Math ( especially for c) Dan McClure owns a thriving indepe

ID: 379759 • Letter: P

Question

Please show the work/Math ( especially for c)

Dan McClure owns a thriving independent bookstore in artsy New Hope, Pennsylvania. He must decide how many copies to order of a new book, Power and Self-Destruction, an exposé on a famous politician’s lurid affairs. Interest in the book will be intense at first and then fizzle quickly as attention turns to other celebrities. The book’s retail price is $20, and the wholesale price is $12. The publisher will buy back the retailer’s leftover copies at a full refund, but McClure Books incurs $4 in shipping and handling costs for each book returned to the publisher. Dan believes his demand forecast can be represented by a normal distribution with a mean of 200 and a standard deviation of 80.

a.

Dan considers a book a “dog” if it sells less than 50 percent of his mean forecast. What is the probability this exposé is a “dog”?

b.

What is the probability that demand for this book will be within 20 percent of the mean forecast?

c.

What order quantity maximizes Dan’s expected profit?

a.

Dan considers a book a “dog” if it sells less than 50 percent of his mean forecast. What is the probability this exposé is a “dog”?

b.

What is the probability that demand for this book will be within 20 percent of the mean forecast?

c.

What order quantity maximizes Dan’s expected profit?

Explanation / Answer

a) 50% of mean forecast = 200*50% 100

z-stat = (100-200)/80 = -1.25

F(z) = NORMSDIST(z) = NORMSDIST(-1.25) = 0.1056 or 10.56 %

Therefore, probability this exposé is a “dog” = 10.56 %

b) upper bound of 20% of mean forecast = 200*(1+20%) = 240

z-stat = (240-200)/80 = 0.5

Corresponding F(z) = NORMSDIST(0.5) = 0.6914

lower bound of 20% of mean forecast = 200*(1-20%) = 160

z-stat = (160-200)/80 = -0.5

Corresponding F(z) = NORMSDIST(-0.5) = 0.3086

Probability that demand for this book will be within 20 percent of the mean forecast = 0.6914 - 0.3086 = 0.3828 or 38.28 %

c) Underage cost, Cu = retail - wholesale price = 20-12 = 8

Overage cost, Co = shipping and handling cost incurrent to return the unsold books = 4

Optimal service level, F(z) = Cu/(Cu+Co) = 8/(8+4) = 0.67

z-stat = NORMSINV(0.67) = 0.4307

Optimal order quantity that maximizes expected profit = mean + z * Std dev

= 200 + 0.4307 * 80

= 234