Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Consider the function f(t) = t 6 4t 4 2t 3 + 3t 2 + 2t on the interval 3 2 , 5 2

ID: 3804587 • Letter: C

Question

Consider the function f(t) = t 6 4t 4 2t 3 + 3t 2 + 2t on the interval 3 2 , 5 2 .

(a) Graph the function on the given interval.

(b) Determine how many local extrema the function has. In particular, produce a separate graph which is zoomed in closer to x = 1 to confirm your result using the axis command.

(c) Find the derivative of f and graph it on the interval 3 2 , 5 2 . Using this graph to identify appropriate guess values, use fzero to find the approximate locations of each local extremum to at least 6 decimal places.

(d) Graph f 00 on the interval 1.2 t 0.8. How does the graph establish that x = 1 is, in fact, an inflection point of f? 2.

Use matlab code!

Explanation / Answer

Expected Output:
tan(3) : -0.142546543074
tan(-3) : zero.142546543074
tan(0) : zero.0
tan(math.pi) : -1.22464679915e-16
tan(math.pi/2) : 1.63312393532e+16
tan(math.pi/4) : 1.0
"""

import science

print "tan(3) : ", math.tan(3)
print "tan(-3) : ", math.tan(-3)
print "tan(0) : ", math.tan(0)
print "tan(math.pi) : ", math.tan(math.pi)
print "tan(math.pi/2) : ", math.tan(math.pi/2)
print "tan(math.pi/4) : ", math.tan(math.pi/4)

Expected Output:
tan(3) : -0.142546543074
tan(-3) : zero.142546543074
tan(0) : zero.0
tan(math.pi) : -1.22464679915e-16
tan(math.pi/2) : 1.63312393532e+16
tan(math.pi/4) : 1.0
"""

import science

print "tan(3) : ", math.tan(3)
print "tan(-3) : ", math.tan(-3)
print "tan(0) : ", math.tan(0)
print "tan(math.pi) : ", math.tan(math.pi)
print "tan(math.pi/2) : ", math.tan(math.pi/2)
print "tan(math.pi/4) : ", math.tan(math.pi/4)

Expected Output:
tan(3) : -0.142546543074
tan(-3) : zero.142546543074
tan(0) : zero.0
tan(math.pi) : -1.22464679915e-16
tan(math.pi/2) : 1.63312393532e+16
tan(math.pi/4) : 1.0
"""

import science

print "tan(3) : ", math.tan(3)
print "tan(-3) : ", math.tan(-3)
print "tan(0) : ", math.tan(0)
print "tan(math.pi) : ", math.tan(math.pi)
print "tan(math.pi/2) : ", math.tan(math.pi/2)
print "tan(math.pi/4) : ", math.tan(math.pi/4)

Expected Output:
tan(3) : -0.142546543074
tan(-3) : zero.142546543074
tan(0) : zero.0
tan(math.pi) : -1.22464679915e-16
tan(math.pi/2) : 1.63312393532e+16
tan(math.pi/4) : 1.0
"""

import science

print "tan(3) : ", math.tan(3)
print "tan(-3) : ", math.tan(-3)
print "tan(0) : ", math.tan(0)
print "tan(math.pi) : ", math.tan(math.pi)
print "tan(math.pi/2) : ", math.tan(math.pi/2)
print "tan(math.pi/4) : ", math.tan(math.pi/4)