Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Mathematical induction: If n is an integer greater than or equal to 1, then the

ID: 3806160 • Letter: M

Question

Mathematical induction:

If n is an integer greater than or equal to 1, then the function nines(n) returns an integer made up of n 9’s. For example:

nines(1)

  =  

9

nines(2)

  =  

99

nines(3)

  =  

999

nines(4)

  =  

9999

Let P(n) [nines(n) + 1 = 10n]. Prove that P(n) is true for all n 1, by mathematical induction. Use the induction schema [P(1) k [P(k) P(k + 1)]] n P(n).

1. (5 points.) What is the base case, P(1)?

2. (5 points.) What is the inductive case, k [P(k) P(k + 1)]?

3. (10 points.) Use your answers from questions 1 and 2 to construct the proof.

nines(1)

  =  

9

nines(2)

  =  

99

nines(3)

  =  

999

nines(4)

  =  

9999

Explanation / Answer

1)By mathematical inducation,let n=1

nines(n)+1=10n

L.H.S:nines(1)+1=9+1=10(since,nines(1)=9)

=10(1)

R.H.S:10n=10(1)(since we took n=1)

therefore,L.H.S=R.H.S

2) Inductive case, k [P(k) P(k + 1)]:

let us assume that for a moment, P (k) is true

nines(n)+1=10n

=> nines(k)+1=10k

We'll show the truth of P(k+1) is true

L.H.S:nines(k)+1=nines(k+1)+1

R.H.S:10k=10(k+1)

3)proof: i.e.,nines(k)+1=10k=>nines(k+1)+1=10(k+1)

Thus if P (k) is true then P(k+1) is true.

therefore,k [P(k) P(k + 1)]

Hence ,proved