Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Following is a class in which we implemented a priority queue using an array-bas

ID: 3829151 • Letter: F

Question

Following is a class in which we implemented a priority queue using an array-based heap.

Complete the heapOrderValid() and isCompleteTree() methods which verify that the data in store has the specified property.

----------------------------------

---------------------------------

package edu.buffalo.cse116;

import java.util.AbstractCollection;
import java.util.Arrays;
import java.util.Iterator;
import java.util.NoSuchElementException;

/**
* Implementation of a priority queue using an array-based binary tree. This is used to help students understand the
* basic properties binary trees and will have more details explained in future lectures.
*
* @author William J. Collins
* @author Matthew Hertz
* @param Data type (which must be Comparable) of the elements in this tree.
*/
public class PriorityQueue> extends AbstractCollection {
/** Index where the root node can be found. */
private static final int ROOT = 0;

/** Array used to store the elements in the binary tree. */
private E[] store;

/** Number of elements within the tree. */
private int size;

/**
* Initializes this ArrayBinaryTree object to be empty. This creates the array in which items will be stored.
*/
@SuppressWarnings("unchecked")
public PriorityQueue() {
store = (E[]) new Comparable[31];
size = 0;
}

/**
* Checks if the binary tree contains an element at the given index. This requires checking both that the array is
* large enough (to avoid triggering an exception) AND (when the array is large enough) that the array has a non-null
* value at that index.
*
* @param idx Index to be checked out.
* @return True if there is an element at the given index; false otherwise.
*/
private boolean nodeExists(int idx) {
boolean arrayLocationExists = idx < store.length;
return arrayLocationExists && (store[idx] != null);
}

/**
* Given an index, returns the element in that node's left child. If the left child node does not exist, null should
* be returned. It is important that this NOT trigger an index out of bounds exception.
*
* @param idx Index of the node for which we want the left child.
* @return Value of the node's left child or null if no left child exists.
*/
private E leftChild(int idx) {
int leftChild = (idx * 2) + 1;
if (!nodeExists(leftChild)) {
return null;
}
return store[leftChild];
}

/**
* Given an index, returns the element in that node's right child. If the right child node does not exist, null should
* be returned. It is important that this NOT trigger an index out of bounds exception.
*
* @param idx Index of the node for which we want the right child.
* @return Value of the node's right child or null if no right child exists.
*/
private E rightChild(int idx) {
int rightChild = (idx * 2) + 2;
if (!nodeExists(rightChild)) {
return null;
}
return store[rightChild];
}

/**
* Given an index, returns the value of that node's parent. If the node is the root (and so has no parent), null
* should be returned. It is important that this NOT trigger an index out of bounds exception.
*
* @param idx Index of the node for which we want the parent.
* @return Value of the node's parent or null if no parent exists.
*/
private E parent(int idx) {
int parent = (idx - 1) / 2;
if (idx == ROOT) {
return null;
}
return store[parent];
}

/**
* Returns the size of this ArrayBinaryTree object.
*
* @return the size of this ArrayBinaryTree object.
*/
@Override
public int size() {
return size;
}

/**
* Returns an iterator that will return the elements in this ArrayBinaryTree, but without any specific ordering.
*
* @return Iterator positioned at the smallest element in this ArrayBinaryTree object.
*/
@Override
public Iterator iterator() {
// Skipped for now.
throw new UnsupportedOperationException();
}

/**
* Adds the specified element to this heap in the appropriate position according to its key value.
*
* @param obj the element to be added to the heap
* @return Since this method will always succeed, it only returns true.
*/
@Override
public boolean add(E obj) {
// Make certain the store has space to add an element.
if (size == store.length) {
store = Arrays.copyOf(store, store.length * 2);
}
store[size] = obj;
size += 1;
// We will discuss what must happen here so that we guarantee the heap order property on Monday
return true;
}

/**
* Remove the element with the lowest value in this heap and returns a reference to it. Throws an
* NoSuchElementException if the heap is empty.
*
* @return the element with the lowest value in this heap
*/
public E remove() {
if (isEmpty()) {
throw new NoSuchElementException("Cannot call remove on an empty LinkedHeap");
}
E retVal = store[0];
store[0] = store[size - 1];
size -= 1;
// We will discuss what must happen here so that we guarantee the heap order property on Monday
return retVal;
}

/**
* Returns the element with the lowest value in this heap. Throws an NoSuchElementException if the heap is empty.
*
* @return the element with the lowest value in this heap
*/
public E element() {
if (isEmpty()) {
throw new NoSuchElementException("Cannot call remove on an empty LinkedHeap");
}
return store[0];
}

public boolean heapOrderValid() {
      
  
}

public boolean isCompleteTree() {

}
}

--------------------------

Test file here

package edu.buffalo.cse116;

import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;

import org.junit.Test;

public class PriorityQueueTest {

@Test
public final void testHeapOrderEmpty() {
PriorityQueue<Integer> pqInt = new PriorityQueue<>();
boolean actual = pqInt.heapOrderValid();
assertTrue("An empty PriorityQueue cannot have elements out of order!", actual);
}

@Test
public final void testHeapOrderSingle() {
PriorityQueue<String> pqStr = new PriorityQueue<>();
pqStr.add("First");
boolean actual = pqStr.heapOrderValid();
assertTrue("A PriorityQueue with 1 element cannot have its element out of order!", actual);
}

@Test
public final void testHeapOrderDoubleGood() {
PriorityQueue<String> pqStr = new PriorityQueue<>();
pqStr.add("First");
pqStr.add("Second");
boolean actual = pqStr.heapOrderValid();
assertTrue("If root is smaller than its left child, the heap order is valid.", actual);
}

@Test
public final void testHeapOrderDoubleBad() {
PriorityQueue<String> pqStr = new PriorityQueue<>();
pqStr.add("First");
pqStr.add("Actually");
boolean actual = pqStr.heapOrderValid();
assertFalse("If root is larger than its left child, the heap order is NOT valid.", actual);
}

@Test
public final void testHeapOrderTripleGood() {
PriorityQueue<String> pqStr = new PriorityQueue<>();
pqStr.add("First");
pqStr.add("Second");
pqStr.add("Good");
boolean actual = pqStr.heapOrderValid();
assertTrue("If root is smaller than both children, the heap order is valid.", actual);
}

@Test
public final void testHeapOrderTripleBad() {
PriorityQueue<String> pqStr = new PriorityQueue<>();
pqStr.add("First");
pqStr.add("Second");
pqStr.add("Fire");
boolean actual = pqStr.heapOrderValid();
assertFalse("If root is larger than a child, the heap order is NOT valid.", actual);

PriorityQueue<Integer> pqInt = new PriorityQueue<>();
pqInt.add(104);
pqInt.add(103);
pqInt.add(105);
actual = pqInt.heapOrderValid();
assertFalse("If root is larger than a child, the heap order is NOT valid.", actual);
}

@Test
public final void testHeapOrderLargerGood() {
PriorityQueue<Integer> pqInt = new PriorityQueue<>();
pqInt.add(104);
pqInt.add(105);
pqInt.add(140);
pqInt.add(108);
pqInt.add(109);
pqInt.add(141);
pqInt.add(141);
pqInt.add(110);
boolean actual = pqInt.heapOrderValid();
assertTrue("To be valid, all nodes must be more important than their children.", actual);
}

@Test
public final void testHeapOrderLargerBad() {
PriorityQueue<Integer> pqInt = new PriorityQueue<>();
pqInt.add(104);
pqInt.add(105);
pqInt.add(140);
pqInt.add(108);
pqInt.add(109);
pqInt.add(141);
pqInt.add(110);
pqInt.add(141);
boolean actual = pqInt.heapOrderValid();
assertFalse("To be valid, all nodes must be more important than their children.", actual);
}

@Test
public final void testCompleteTreeEmpty() {
PriorityQueue<Integer> pqInt = new PriorityQueue<>();
boolean actual = pqInt.isCompleteTree();
assertTrue("An empty PriorityQueue is trivially complete!", actual);
}

@Test
public final void testCompleteTreeSingleGood() {
PriorityQueue<String> pqStr = new PriorityQueue<>();
pqStr.add("First");
boolean actual = pqStr.isCompleteTree();
assertTrue("A complete tree must have its (non-null) elements added level-by-level and from left-to-right within a level.",
actual);
}

@Test
public final void testCompleteTreeSingleBad() {
PriorityQueue<String> pqStr = new PriorityQueue<>();
pqStr.add(null);
boolean actual = pqStr.isCompleteTree();
assertFalse("A complete tree must have its (non-null) elements added level-by-level and from left-to-right within a level.",
actual);
}

@Test
public final void testCompleteTreeDoubleGood() {
PriorityQueue<String> pqStr = new PriorityQueue<>();
pqStr.add("First");
pqStr.add("Second");
boolean actual = pqStr.isCompleteTree();
assertTrue("A complete tree must have its (non-null) elements added level-by-level and from left-to-right within a level.",
actual);
}

@Test
public final void testCompleteTreeDoubleBad() {
PriorityQueue<String> pqStr = new PriorityQueue<>();
pqStr.add("First");
pqStr.add(null);
boolean actual = pqStr.isCompleteTree();
assertFalse("If root is larger than its left child, the heap order is NOT valid.", actual);

pqStr = new PriorityQueue<>();
pqStr.add("First");
pqStr.add("Second");
pqStr.add(null);
actual = pqStr.isCompleteTree();
assertFalse("If root is larger than its left child, the heap order is NOT valid.", actual);
}

@Test
public final void testCompleteTreeLargerGood() {
PriorityQueue<Integer> pqInt = new PriorityQueue<>();
pqInt.add(104);
pqInt.add(105);
pqInt.add(140);
pqInt.add(108);
pqInt.add(109);
pqInt.add(141);
pqInt.add(141);
pqInt.add(110);
boolean actual = pqInt.heapOrderValid();
assertTrue("If root is larger than its left child, the heap order is NOT valid.", actual);
}

@Test
public final void testCompleteTreeLargerBad() {
PriorityQueue<Integer> pqInt = new PriorityQueue<>();
pqInt.add(104);
pqInt.add(105);
pqInt.add(140);
pqInt.add(108);
pqInt.add(null);
pqInt.add(141);
pqInt.add(110);
pqInt.add(141);
boolean actual = pqInt.heapOrderValid();
assertFalse("If root is larger than its left child, the heap order is NOT valid.", actual);
}
}

Explanation / Answer

Hi, Please find my implementation.

It passes all test cases:

import java.util.AbstractCollection;

import java.util.Arrays;

import java.util.Iterator;

import java.util.NoSuchElementException;

/**

* Implementation of a priority queue using an array-based binary tree. This is used to help students understand the

* basic properties binary trees and will have more details explained in future lectures.

*

* @author William J. Collins

* @author Matthew Hertz

* @param Data type (which must be Comparable) of the elements in this tree.

*/

public class PriorityQueue<E extends Comparable<E>> extends AbstractCollection {

   /** Index where the root node can be found. */

   private static final int ROOT = 0;

   /** Array used to store the elements in the binary tree. */

   private E[] store;

   /** Number of elements within the tree. */

   private int size;

   /**

   * Initializes this ArrayBinaryTree object to be empty. This creates the array in which items will be stored.

   */

   @SuppressWarnings("unchecked")

   public PriorityQueue() {

       store = (E[]) new Comparable[31];

       size = 0;

   }

   /**

   * Checks if the binary tree contains an element at the given index. This requires checking both that the array is

   * large enough (to avoid triggering an exception) AND (when the array is large enough) that the array has a non-null

   * value at that index.

   *

   * @param idx Index to be checked out.

   * @return True if there is an element at the given index; false otherwise.

   */

   private boolean nodeExists(int idx) {

       boolean arrayLocationExists = idx < store.length;

       return arrayLocationExists && (store[idx] != null);

   }

   /**

   * Given an index, returns the element in that node's left child. If the left child node does not exist, null should

   * be returned. It is important that this NOT trigger an index out of bounds exception.

   *

   * @param idx Index of the node for which we want the left child.

   * @return Value of the node's left child or null if no left child exists.

   */

   private E leftChild(int idx) {

       int leftChild = (idx * 2) + 1;

       if (!nodeExists(leftChild)) {

           return null;

       }

       return store[leftChild];

   }

   /**

   * Given an index, returns the element in that node's right child. If the right child node does not exist, null should

   * be returned. It is important that this NOT trigger an index out of bounds exception.

   *

   * @param idx Index of the node for which we want the right child.

   * @return Value of the node's right child or null if no right child exists.

   */

   private E rightChild(int idx) {

       int rightChild = (idx * 2) + 2;

       if (!nodeExists(rightChild)) {

           return null;

       }

       return store[rightChild];

   }

   /**

   * Given an index, returns the value of that node's parent. If the node is the root (and so has no parent), null

   * should be returned. It is important that this NOT trigger an index out of bounds exception.

   *

   * @param idx Index of the node for which we want the parent.

   * @return Value of the node's parent or null if no parent exists.

   */

   private E parent(int idx) {

       int parent = (idx - 1) / 2;

       if (idx == ROOT) {

           return null;

       }

       return store[parent];

   }

   /**

   * Returns the size of this ArrayBinaryTree object.

   *

   * @return the size of this ArrayBinaryTree object.

   */

   @Override

   public int size() {

       return size;

   }

   /**

   * Returns an iterator that will return the elements in this ArrayBinaryTree, but without any specific ordering.

   *

   * @return Iterator positioned at the smallest element in this ArrayBinaryTree object.

   */

   @Override

   public Iterator iterator() {

       // Skipped for now.

       throw new UnsupportedOperationException();

   }

   /**

   * Adds the specified element to this heap in the appropriate position according to its key value.

   *

   * @param obj the element to be added to the heap

   * @return Since this method will always succeed, it only returns true.

   */

   //@Override

   public boolean add(Object obj) {

       // Make certain the store has space to add an element.

       if (size == store.length) {

           store = Arrays.copyOf(store, store.length * 2);

       }

       store[size] = (E)obj;

       size += 1;

       // We will discuss what must happen here so that we guarantee the heap order property on Monday

       return true;

   }

   /**

   * Remove the element with the lowest value in this heap and returns a reference to it. Throws an

   * NoSuchElementException if the heap is empty.

   *

   * @return the element with the lowest value in this heap

   */

   public E remove() {

       if (isEmpty()) {

           throw new NoSuchElementException("Cannot call remove on an empty LinkedHeap");

       }

       E retVal = store[0];

       store[0] = store[size - 1];

       size -= 1;

       // We will discuss what must happen here so that we guarantee the heap order property on Monday

       return retVal;

   }

   /**

   * Returns the element with the lowest value in this heap. Throws an NoSuchElementException if the heap is empty.

   *

   * @return the element with the lowest value in this heap

   */

   public E element() {

       if (isEmpty()) {

           throw new NoSuchElementException("Cannot call remove on an empty LinkedHeap");

       }

       return store[0];

   }

   public boolean heapOrderValid() {

       // Start from root and go till the last internal

       // node

       for (int i=0; i<=(size-2)/2; i++)

       {

           // If left child is greater, return false

           if (store[2*i +1] != null && store[2*i +1].compareTo(store[i]) < 0)

               return false;

           // If right child is greater, return false

           if (store[2*i +2] != null && store[2*i +2].compareTo(store[i]) < 0)

               return false;

       }

       return true;

   }

   public boolean isCompleteTree() {

       // if we have any non-null node from size to end, then it is not complete tree

       for(int i = size; i<store.length; i++){

           if(store[i] != null)

               return false;

       }

      

       // if any elemnet is null in range 0 to size-1, then it is not complete tree

       for(int i=0; i<size; i++){

           if(store[i] == null)

               return false;

       }

       return true;

   }

}

######### Test Run output #######

PASSED: testCompleteTreeDoubleBad

PASSED: testCompleteTreeDoubleGood

PASSED: testCompleteTreeEmpty

PASSED: testCompleteTreeLargerBad

PASSED: testCompleteTreeLargerGood

PASSED: testCompleteTreeSingleBad

PASSED: testCompleteTreeSingleGood

PASSED: testHeapOrderDoubleBad

PASSED: testHeapOrderDoubleGood

PASSED: testHeapOrderEmpty

PASSED: testHeapOrderLargerBad

PASSED: testHeapOrderLargerGood

PASSED: testHeapOrderSingle

PASSED: testHeapOrderTripleBad

PASSED: testHeapOrderTripleGood

===============================================

Default test

Tests run: 15, Failures: 0, Skips: 0

===============================================

===============================================

Default suite

Total tests run: 15, Failures: 0, Skips: 0

===============================================