Inheritance defines classes in terms of existing classes; a child class inherits
ID: 3875695 • Letter: I
Question
Inheritance defines classes in terms of existing classes; a child class inherits data and operations from its parent class. The child class can then override parent-class operations, if permitted, and add some of its own.
Composition, however, is implemented as an object containing internal references to other objects and interacting with other objects through interface members. Composition thus depends on relationships between objects not inheritance.
The Second Principle of OO Design states "Favor object composition over class inheritance."
Do you agree or disagree? Why? Please give us your opinion on this issue and critique at least one other student's opinion.
Explanation / Answer
Personally I learned to always prefer composition over inheritance. There is no programmatic problem you can solve with inheritance which you cannot solve with composition; though you may have to use Interfaces(Java) or Protocols(Obj-C) in some cases. Since C++ doesn't know any such thing, you'll have to use abstract base classes, which means you cannot get entirely rid of inheritance in C++.
Composition is often more logical, it provides better abstraction, better encapsulation, better code reuse (especially in very large projects) and is less likely to break anything at a distance just because you made an isolated change anywhere in your code. It also makes it easier to uphold the "Single Responsibility Principle", which is often summarized as "There should never be more than one reason for a class to change.", and it means that every class exists for a specific purpose and it should only have methods that are directly related to its purpose. Also having a very shallow inheritance tree makes it much easier to keep the overview even when your project starts to get really large. Many people think that inheritance represents our real world pretty well, but that isn't the truth. The real world uses much more composition than inheritance. Pretty much every real world object you can hold in your hand has been composed out of other, smaller real world objects.
There are downsides of composition, though. If you skip inheritance altogether and only focus on composition, you will notice that you often have to write a couple of extra code lines that weren't necessary if you had used inheritance. You are also sometimes forced to repeat yourself and this violates the DRY Principle (DRY = Don't Repeat Yourself). Also composition often requires delegation, and a method is just calling another method of another object with no other code surrounding this call. Such "double method calls" (which may easily extend to triple or quadruple method calls and even farther than that) have much worse performance than inheritance, where you simply inherit a method of your parent. Calling an inherited method may be equally fast as calling a non-inherited one, or it may be slightly slower, but is usually still faster than two consecutive method calls.
You may have noticed that most OO languages don't allow multiple inheritance. While there are a couple of cases where multiple inheritance can really buy you something, but those are rather exceptions than the rule. Whenever you run into a situation where you think "multiple inheritance would be a really cool feature to solve this problem", you are usually at a point where you should re-think inheritance altogether, since even it may require a couple of extra code lines, a solution based on composition will usually turn out to be much more elegant, flexible and future proof.
Inheritance is really a cool feature, but I'm afraid it has been overused the last couple of years. People treated inheritance as the one hammer that can nail it all, regardless if it was actually a nail, a screw, or maybe a something completely different.
Composition is just playing it modular: you create interface similar to the parent class, create new object and delegate calls to it. If these objects need not to know of each other, it's quite safe and easy to use composition. There are so many possibilites here.
However, if the parent class for some reason needs to access functions provided by the "child class" for inexperienced programmer it may look like it's a great place to use inheritance. The parent class can just call it's own abstract "foo()" which is overwritten by the subclass and then it can give the value to the abstract base.
It looks like a nice idea, but in many cases it's better just give the class an object which implements the foo() (or even set the value provided the foo() manually) than to inherit the new class from some base class which requires the function foo() to be specified.
Why?
Because inheritance is a poor way of moving information.
The composition has a real edge here: the relationship can be reversed: the "parent class" or "abstract worker" can aggregate any specific "child" objects implementing certain interface + any child can be set inside any other type of parent, which accepts it's type. And there can be any number of objects, for example MergeSort or QuickSort could sort any list of objects implementing an abstract Compare -interface. Or to put it another way: any group of objects which implement "foo()" and other group of objects which can make use of objects having "foo()" can play together.
I can think of three real reasons for using inheritance:
If these are true, then it is probably necessary to use inheritance.
There is nothing bad in using reason 1, it is very good thing to have a solid interface on your objects. This can be done using composition or with inheritance, no problem - if this interface is simple and does not change. Usually inheritance is quite effective here.
If the reason is number 2 it gets a bit tricky. Do you really only need to use the same base class? In general, just using the same base class is not good enough, but it may be a requirement of your framework, a design consideration which can not be avoided.
However, if you want to use the private variables, the case 3, then you may be in trouble. If you consider global variables unsafe, then you should consider using inheritance to get access to private variables also unsafe. Mind you, global variables are not all THAT bad - databases are essentially big set of global variables. But if you can handle it, then it's quite fine.
If you want additional information, you can go through this link: https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose