Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

I\'m trying to produce 8 queens and my code is only outputting seven. I need to

ID: 3880659 • Letter: I

Question

I'm trying to produce 8 queens and my code is only outputting seven. I need to know why my code is doing this. The output and code are below:

Java-Queens/src/EightQueens,java-Eclipse File Edit Source Refactor Navigate Search Project Run Window Help Quick Access Java DQueensjava EightQueens.java @ Javadoc > Declaration Console × . E. Eulo1 1 @ ram FilesJava re1.8.0 65binjavav public class EightQueens EightQueens [lava lication] C public static void main (String[] args)t 10000000 00001000 01000000 00000100 00100000 00000010 00010000 / TODO Auto-generated method stub Queens board- new Queens ) if (board.placeQueens (Queens.QUEEN) true board.displayBoard)

Explanation / Answer

/* Java program to solve N Queen Problem using

   backtracking */

public class NQueenProblem

{

    final int N = 4;

    /* A utility function to print solution */

    void printSolution(int board[][])

    {

        for (int i = 0; i < N; i++)

        {

            for (int j = 0; j < N; j++)

                System.out.print(" " + board[i][j]

                                 + " ");

            System.out.println();

        }

    }

    /* A utility function to check if a queen can

       be placed on board[row][col]. Note that this

       function is called when "col" queens are already

       placeed in columns from 0 to col -1. So we need

       to check only left side for attacking queens */

    boolean isSafe(int board[][], int row, int col)

    {

        int i, j;

        /* Check this row on left side */

        for (i = 0; i < col; i++)

            if (board[row][i] == 1)

                return false;

        /* Check upper diagonal on left side */

        for (i=row, j=col; i>=0 && j>=0; i--, j--)

            if (board[i][j] == 1)

                return false;

        /* Check lower diagonal on left side */

        for (i=row, j=col; j>=0 && i<N; i++, j--)

            if (board[i][j] == 1)

                return false;

        return true;

    }

    /* A recursive utility function to solve N

       Queen problem */

    boolean solveNQUtil(int board[][], int col)

    {

        /* base case: If all queens are placed

           then return true */

        if (col >= N)

            return true;

        /* Consider this column and try placing

           this queen in all rows one by one */

        for (int i = 0; i < N; i++)

        {

            /* Check if queen can be placed on

               board[i][col] */

            if (isSafe(board, i, col))

            {

                /* Place this queen in board[i][col] */

                board[i][col] = 1;

                /* recur to place rest of the queens */

                if (solveNQUtil(board, col + 1) == true)

                    return true;

                /* If placing queen in board[i][col]

                   doesn't lead to a solution then

                   remove queen from board[i][col] */

                board[i][col] = 0; // BACKTRACK

            }

        }

        /* If queen can not be place in any row in

           this colum col, then return false */

        return false;

    }

    /* This function solves the N Queen problem using

       Backtracking. It mainly uses solveNQUtil() to

       solve the problem. It returns false if queens

       cannot be placed, otherwise return true and

       prints placement of queens in the form of 1s.

       Please note that there may be more than one

       solutions, this function prints one of the

       feasible solutions.*/

    boolean solveNQ()

    {

        int board[][] = {{0, 0, 0, 0},

            {0, 0, 0, 0},

            {0, 0, 0, 0},

            {0, 0, 0, 0}

        };

        if (solveNQUtil(board, 0) == false)

        {

            System.out.print("Solution does not exist");

            return false;

        }

        printSolution(board);

        return true;

    }

    // driver program to test above function

    public static void main(String args[])

    {

        NQueenProblem Queen = new NQueenProblem();

        Queen.solveNQ();

    }

}

// This code is contributed by Abhishek Shankhadhar

Run on IDE


Output: The 1 values indicate placements of queens

/* Java program to solve N Queen Problem using

   backtracking */

public class NQueenProblem

{

    final int N = 4;

    /* A utility function to print solution */

    void printSolution(int board[][])

    {

        for (int i = 0; i < N; i++)

        {

            for (int j = 0; j < N; j++)

                System.out.print(" " + board[i][j]

                                 + " ");

            System.out.println();

        }

    }

    /* A utility function to check if a queen can

       be placed on board[row][col]. Note that this

       function is called when "col" queens are already

       placeed in columns from 0 to col -1. So we need

       to check only left side for attacking queens */

    boolean isSafe(int board[][], int row, int col)

    {

        int i, j;

        /* Check this row on left side */

        for (i = 0; i < col; i++)

            if (board[row][i] == 1)

                return false;

        /* Check upper diagonal on left side */

        for (i=row, j=col; i>=0 && j>=0; i--, j--)

            if (board[i][j] == 1)

                return false;

        /* Check lower diagonal on left side */

        for (i=row, j=col; j>=0 && i<N; i++, j--)

            if (board[i][j] == 1)

                return false;

        return true;

    }

    /* A recursive utility function to solve N

       Queen problem */

    boolean solveNQUtil(int board[][], int col)

    {

        /* base case: If all queens are placed

           then return true */

        if (col >= N)

            return true;

        /* Consider this column and try placing

           this queen in all rows one by one */

        for (int i = 0; i < N; i++)

        {

            /* Check if queen can be placed on

               board[i][col] */

            if (isSafe(board, i, col))

            {

                /* Place this queen in board[i][col] */

                board[i][col] = 1;

                /* recur to place rest of the queens */

                if (solveNQUtil(board, col + 1) == true)

                    return true;

                /* If placing queen in board[i][col]

                   doesn't lead to a solution then

                   remove queen from board[i][col] */

                board[i][col] = 0; // BACKTRACK

            }

        }

        /* If queen can not be place in any row in

           this colum col, then return false */

        return false;

    }

    /* This function solves the N Queen problem using

       Backtracking. It mainly uses solveNQUtil() to

       solve the problem. It returns false if queens

       cannot be placed, otherwise return true and

       prints placement of queens in the form of 1s.

       Please note that there may be more than one

       solutions, this function prints one of the

       feasible solutions.*/

    boolean solveNQ()

    {

        int board[][] = {{0, 0, 0, 0},

            {0, 0, 0, 0},

            {0, 0, 0, 0},

            {0, 0, 0, 0}

        };

        if (solveNQUtil(board, 0) == false)

        {

            System.out.print("Solution does not exist");

            return false;

        }

        printSolution(board);

        return true;

    }

    // driver program to test above function

    public static void main(String args[])

    {

        NQueenProblem Queen = new NQueenProblem();

        Queen.solveNQ();

    }

}

// This code is contributed by Abhishek Shankhadhar