Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

I\'m trying to construct a program using C++ in which a user constructs a weight

ID: 3911846 • Letter: I

Question

I'm trying to construct a program using C++ in which a user constructs a weighted graph and implements Dijkstra's algorithm to find the shortest path between nodes. This is the header file. I'm missing a Graph.cpp and main.cpp. Steps to help me construct those two would be greatly appreciated!

class Graph k class List; class Vertex public: char label; int dist, index List adjList; Vertex next, sprev, *prior; Vertex(char); -Vertex() class List t public: class Node f public: Vertex datum Node mext, prev int dist; Node(Vertexs, int) t: Node* head; void destr_helper(Node*) List) -List) void add(Vertexs, int); void rem(char) bool contains(char) class PQucue Vertexxheap int tail; int parent(int); int left (int); int right(int) void swap(int, int) public: PQueue() -POueueO void upheap(int); void downheap(int) void heapify(Vertexs, int) Vertexs pop) bool enpty): Vertexs vertices PQueue* dijoueue; int order; bool directed; bool has vert(char); void destr_helper(Vertex*) void trace path(Vertexs) public: Graph(bool); -Graph) friend ostream& operator

Explanation / Answer

let us see following example which is Dijkstra's program for finding shortest path:

// C program for Dijkstra's single

// source shortest path algorithm.

// The program is for adjacency matrix

// representation of the graph.

#include <stdio.h>

#include <limits.h>

// Number of vertices

// in the graph

#define V 9

// A utility function to find the

// vertex with minimum distance

// value, from the set of vertices

// not yet included in shortest

// path tree

int minDistance(int dist[],

bool sptSet[])

{

// Initialize min value

int min = INT_MAX, min_index;

for (int v = 0; v < V; v++)

if (sptSet[v] == false &&

dist[v] <= min)

min = dist[v], min_index = v;

return min_index;

}

// Function to print shortest

// path from source to j

// using parent array

void printPath(int parent[], int j)

{

// Base Case : If j is source

if (parent[j] == - 1)

return;

printPath(parent, parent[j]);

printf("%d ", j);

}

// A utility function to print

// the constructed distance

// array

int printSolution(int dist[], int n,

int parent[])

{

int src = 0;

printf("Vertex Distance Path");

for (int i = 1; i < V; i++)

{

printf(" %d -> %d %d %d ",

src, i, dist[i], src);

printPath(parent, i);

}

}

// Funtion that implements Dijkstra's

// single source shortest path

// algorithm for a graph represented

// using adjacency matrix representation

void dijkstra(int graph[V][V], int src)

{

// The output array. dist[i]

// will hold the shortest

// distance from src to i

int dist[V];

// sptSet[i] will true if vertex

// i is included / in shortest

// path tree or shortest distance

// from src to i is finalized

bool sptSet[V];

// Parent array to store

// shortest path tree

int parent[V];

// Initialize all distances as

// INFINITE and stpSet[] as false

for (int i = 0; i < V; i++)

{

parent[0] = -1;

dist[i] = INT_MAX;

sptSet[i] = false;

}

// Distance of source vertex

// from itself is always 0

dist[src] = 0;

// Find shortest path

// for all vertices

for (int count = 0; count < V - 1; count++)

{

// Pick the minimum distance

// vertex from the set of

// vertices not yet processed.

// u is always equal to src

// in first iteration.

int u = minDistance(dist, sptSet);

// Mark the picked vertex

// as processed

sptSet[u] = true;

// Update dist value of the

// adjacent vertices of the

// picked vertex.

for (int v = 0; v < V; v++)

// Update dist[v] only if is

// not in sptSet, there is

// an edge from u to v, and

// total weight of path from

// src to v through u is smaller

// than current value of

// dist[v]

if (!sptSet[v] && graph[u][v] &&

dist[u] + graph[u][v] < dist[v])

{

parent[v] = u;

dist[v] = dist[u] + graph[u][v];

}

}

// print the constructed

// distance array

printSolution(dist, V, parent);

}

// Driver Code

int main()

{

// Let us create the example

// graph discussed above

int graph[V][V] = {{0, 4, 0, 0, 0, 0, 0, 8, 0},

{4, 0, 8, 0, 0, 0, 0, 11, 0},

{0, 8, 0, 7, 0, 4, 0, 0, 2},

{0, 0, 7, 0, 9, 14, 0, 0, 0},

{0, 0, 0, 9, 0, 10, 0, 0, 0},

{0, 0, 4, 0, 10, 0, 2, 0, 0},

{0, 0, 0, 14, 0, 2, 0, 1, 6},

{8, 11, 0, 0, 0, 0, 1, 0, 7},

{0, 0, 2, 0, 0, 0, 6, 7, 0}

};

dijkstra(graph, 0);

return 0;

}