Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Tiffany’s home has four valuable paintings that are up for sale. Four customers

ID: 450080 • Letter: T

Question

Tiffany’s   home   has   four   valuable   paintings   that   are   up   for   sale.       Four   customers   are   bidding   for   the   paintings.       The   prices   that   each   customer   is   willing   to   pay   for   the   paintings   she   is   bidding   are   given   in   the   table   below.      

a)Use   Hungarian   method   to   determine   how   to   maximize   the   total   revenue   received   from   the   sale   of   the   paintings.

b)   Formulate   it   a   s   an   integer   program   and   solve   it   with   a   solver   to   check   your   solution   in   part   a       (you   can   use   only   necessary   decision   variables,   i.e.   if   an   assignment   is   not   possible   based   on   the   values   in   the   matrix   do   not   include   that   particular   decision   variable   in   the   model)

Need detailed steps please. Thanks.

Explanation / Answer

Customer Painting 1 Painting 2 Painting 3 Painting 4 1              8            11             -               -   2              9            13            12              7 3              9             -              11             -   4             -               -              12              9 Step 1 Find the largest number in matrix and subtract the matrix with the largest number Number should be absolute Customer Painting 1 Painting 2 Painting 3 Painting 4 1              5              2             -               -   13 is the biggest number 2              4             -                1              6 3              4             -                2             -   4             -               -                1              4 Step 2 Find lowest number in each row and subtract with the row elements Customer Painting 1 Painting 2 Painting 3 Painting 4 1              5              2             -               -   0 is lowest 2              4             -                1              6 0 is lowest 3              4             -                2             -   0 is lowest 4             -               -                1              4 0 is lowest Step 3 Find lowest number in each column and subtract with the row elements Customer Painting 1 Painting 2 Painting 3 Painting 4 1              5              2             -               -   2              4             -                1              6 3              4             -                2             -   4             -               -                1              4 0 is lowest 0 is lowest 0 is lowest 0 is lowest Step 4 Link all 0 with minimum number of lines. If number of lines is less than number of rows than optimal solution has not been reached. If lines equal number of rows or columns than optimal solution is reached. Since we don’t have any. Check for 3 zeros or more and than for 2 zeros Customer Painting 1 Painting 2 Painting 3 Painting 4 1              5              2             -               -   2              4             -                1              6 3              4             -                2             -   4             -               -                1              4 Optimal solution is reached Step 5 Consider 0 as minimum opurtunity lost Go row wise to find minimum zero and then do column wise Customer Painting 1 Painting 2 Painting 3 Painting 4 1              5              2             -               -   2              4             -                1              6 One Zero is here. So painting 2 goes to Customer 2 3              4             -                2             -   Painting 4 goes to customer 3 4             -               -                1              4 Painting 1 goes to customer 4 Painting 3 goes to customer 1