For a Pt|Fe3+, Fe2+ half-cell, find the potential for the filling ratios of [Fe3
ID: 952834 • Letter: F
Question
For a Pt|Fe3+, Fe2+ half-cell, find the potential for the filling ratios of [Fe3+]/[Fe2+]. I need help with 18-27 and 18-28.
Explanation / Answer
18-27 : Using Nernst equation,
E = 0.771 + 0.0592 log([Fe3+]/[Fe2+])
[Fe3+]/Fe2+] = 0.001
E = 0.771 + 0.0592log(0.001) = 0.593 V
[Fe3+]/Fe2+] = 0.0025
E = 0.771 + 0.0592log(0.0025) = 0.617 V
[Fe3+]/Fe2+] = 0.005
E = 0.771 + 0.0592log(0.005) = 0.635 V
[Fe3+]/Fe2+] = 0.0075
E = 0.771 + 0.0592log(0.0075) = 0.645 V
[Fe3+]/Fe2+] = 0.010
E = 0.771 + 0.0592log(0.010) = 0.653 V
[Fe3+]/Fe2+] = 0.025
E = 0.771 + 0.0592log(0.025) = 0.676 V
[Fe3+]/Fe2+] = 0.050
E = 0.771 + 0.0592log(0.050) = 0.694 V
[Fe3+]/Fe2+] = 0.075
E = 0.771 + 0.0592log(0.075) = 0.704 V
[Fe3+]/Fe2+] = 0.100
E = 0.771 + 0.0592log(0.100) = 0.712 V
[Fe3+]/Fe2+] = 0.250
18-28 : Using Nernst equation,
E = 1.61 + 0.0592 log([Ce4+]/Ce3+])
[Ce4+]/Ce3+] = 0.001
E = 1.61 + 0.0592log(0.001) = 1.432 V
[Ce4+]/Ce3+] = 0.0025
E = 1.61 + 0.0592log(0.0025) = 1.456 V
[Ce4+]/Ce3+] = 0.005
E = 1.61 + 0.0592log(0.005) = 1.474 V
[Ce4+]/Ce3+] = 0.0075
E = 1.61 + 0.0592log(0.0075) = 1.484 V
[Ce4+]/Ce3+] = 0.010
E = 1.61 + 0.0592log(0.010) = 1.492 V
[Ce4+]/Ce3+] = 0.025
E = 1.61 + 0.0592log(0.025) = 1.515 V
[Ce4+]/Ce3+] = 0.050
E = 1.61 + 0.0592log(0.050) = 1.533 V
[Ce4+]/Ce3+] = 0.075
E = 1.61 + 0.0592log(0.075) = 1.543 V
[Ce4+]/Ce3+] = 0.100
E = 1.61 + 0.0592log(0.100) = 1.551 V
[Ce4+]/Ce3+] = 0.250
E = 1.61 + 0.0592log(0.250) = 1.574 V
[Ce4+]/Ce3+] = 0.500
E = 1.61 + 0.0592log(0.500) = 1.592 V
[Ce4+]/Ce3+] = 0.750
E = 1.61 + 0.0592log(0.750) = 1.603 V
[Ce4+]/Ce3+] = 1.0
E = 1.61 + 0.0592log(1.0) = 1.61 V
[Ce4+]/Ce3+] = 1.250
E = 1.61 + 0.0592log(1.250) = 1.616 V
[Ce4+]/Ce3+] = 1.50
E = 1.61 + 0.0592log(1.50) = 1.620 V
[Ce4+]/Ce3+] = 1.75
E = 1.61 + 0.0592log(1.75) = 1.624 V
[Ce4+]/Ce3+] = 2.50
E = 1.61 + 0.0592log(2.50) = 1.633 V
[Ce4+]/Ce3+] = 5.00
E = 1.61 + 0.0592log(5.00) = 1.651 V
[Ce4+]/Ce3+] = 10.00
E = 1.61 + 0.0592log(10.0) = 1.669 V
[Ce4+]/Ce3+] = 25.0
E = 1.61 + 0.0592log(25.0) = 1.693 V
[Ce4+]/Ce3+] = 75.0
E = 1.61 + 0.0592log(75.0) = 1.721 V
[Ce4+]/Ce3+] = 100.0
E = 1.61 + 0.0592log(100.0) = 1.728 V