Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

In the circuit shown in the figure (Figure 1) , the capacitors are all initially

ID: 1271693 • Letter: I

Question

In the circuit shown in the figure (Figure 1) , the capacitors are all initially uncharged and the battery has no appreciable internal resistance. Assume that E = 52.5V and R = 17.5 Omega .

A) After the switch S is closed, find the maximum charge on each capacitor.

B)After the switch S is closed, find the maximum potential difference across each capacitor.

C)After the switch S is closed, find the maximum reading of the ammeter A.

D)After the switch S is closed, find the time constant for the circuit.

Explanation / Answer

C20, C30 and C40 are in series, hence their capacitace

         1/CP =   1/C20 + 1/C30 + 1/C40

                  =   1/20   +   1/30   +   1/40

                  =   (6   +   4   +   3) / 120

         CP   =   120 / 13   pF

         C10 and CP are in parallel, therefore net capacitance of the circuit

         C   =   C10 + CP

               =   10   +   120 / 13

               =   250 / 13   pF

    a.    When long time has passed after closing the switch, there will be no current in the circuit and the capacitors will have full charge.

   VC =   V   =   52.5 V

   Charge on    C10               q10   =    C10 * V

                                                =   10 pF * 52.5

                                                =   525 pC

   Charge on CP                     qP     =   CP * V

                                                =   (120 / 13) pF * 52.5

                                                =   484.61 pC

   Since charge in series remains same, hence

   q20 = q30 = q40   =      484.61 pC

   525 pC, 484.61 pC,   484.61 pC,   484.61 pC

   b.   Voltage across C10   =   V   =   52.5 V

         Voltage across   C20   =   V20   =   q20 / C20       

                                             =   484.61 pC / 20 pF

                                             =   24.23 V

         Voltage across   C30   =   V30   =   q30 / C30       

                                             =   484.61 pC / 30 pF

                                             =   16.15 V

         Voltage across   C40   =   V40   =   q40 / C40       

                                             =   484.61 pC / 40 pF

                                             =   12.11 V


   V10, V20,   V30,   V40      =      52.5 V,   24.23 V,   16.15 V,   12.11 V    

   c.   Just after the switch is closed capacitance behaves as short circuit, hence maximum current

         the circuit

         I   =   V / R   =   52.5 / 17.5

               = 3 A


     d.   time constant   ?   =   R * C

                                       = 17.5 * (250 / 13    pF)

                                       = 4375 * 10-12 / 13

                                       =   3.365 * 10-10 s