Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

An infinitely long, cylindrical, insulating shell of inner radius a and outer ra

ID: 1328737 • Letter: A

Question

An infinitely long, cylindrical, insulating shell of inner radius a and outer radius b has a uniform volume charge density sigma. A lone of uniform linear charge density lambda is placed along the axis of the shell. Determine the electric field in the following regions. (Choose a gaussian cylinder of radius r and length L. Use any variable or symbol stated above with the following as necessary: ke) r LT a magnitude e 2klambda/r direction a LT r LT b magnitude e=25(lambda+ppi(r2+a(2)))/r direction outward r GT b magnitude E=2k(lambda+ppi(b2+a(2)))/r direction outword

Explanation / Answer

Infinitely long cylindrical insulating shell,

              inner radius = a ,   outer radius = b.

Consider the Gaussian surface with lenth L, uniform volume charge density = row   and                                  linear charge density = lamda.

Since Electric feild is normal to the surface of cylindrical shell,

case 1)     r < a , charge enclosed by this region is line charge lamda,

       By Gauss Law,    intergral of E . da = (integral of lamda . dl) / eps0

                            E . 4 pi r2 = lamda L / eps0

                               E = lamda L / ( 4 pi eps0 r2)

                                 E = ke lamda L / r2                  where ke = 1 / 4pi eps0

         Electric field pointing outward from centre.

case 2)   a < r < b , charge density row over the volume

                 integral of E . da = (integral of arrow . dv - integral of lamda . dl) / eps0

                          E . 4pi r2 = (row pi L (r2 - a2) - lamda L) / eps0

                                     E = ( row pi L (r2 - a2) - lamda L) / 4 pi eps0 r2

                                      E = ke ( row pi L (r2 - a2) - lamda L) / r2

Elecrtric field is pointing outwaed from centre.

case 3)     r > b, line charge over the outer surface

                          integral of E. da = (integral of lamda . dl + integral of ab row . dv)   / eps0

                                    E . 4pi r2 = ( lamda L + row pi L (b2 - a2 ) / eps0

                                      E = ( lamda L + row pi L (b2 - a2) / 4pi eps0 r2

                                        E =ke ( lamda L + row pi L(b2 - a2 ) / r2

Electric field is pointing out ward from centre.