Map do Sapling Learning macmillan learning The figures show a hypothetical plane
ID: 1793126 • Letter: M
Question
Map do Sapling Learning macmillan learning The figures show a hypothetical planetary system at two different times. The spatial coordinates (x, y) of the bodies are given in Astronomical Units (AU). In the first picture, the velocity of the center of mass of the system is zero. Find the magnitude, ds, of the star's displacement. ms -2.2641 x1030 kg mA-2.3179 x1025 kg mB 6.6485 x10 kg mc = 7.8063 x 1027 kg Number AU (0, 1.0957) (0.4995, 1.5929) (0.1581, 0) (-1.4141, 0) (0, 0) c 0-0.5335) (-0.6755, -0.8927)Explanation / Answer
Both coordinates of Center of mass should be at same location.
So, for x coordinate of Center of mass,
(0.4995*6.6485e26+0.1581*2.3179e28) = (-1.4141*6.6485e26 - 0.6755*7.8063e27+2.2641e30*x)
x =0.004509 AU
Similarly
Now y coordinate of Center of mass,
(1.5929*6.6485e26+1.0957*7.8063e27) = (-0.5335*2.3179e28 - 0.8927*7.8063e27+2.2641e30 y)
y =0.012785 AU
d = sqrt (x^2 +y^2)
= sqrt(0.004509^2 +0.012785^2)
= 0.013557 AU answer