Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Map do Sapling Learning macmillan learning The figures show a hypothetical plane

ID: 1793126 • Letter: M

Question

Map do Sapling Learning macmillan learning The figures show a hypothetical planetary system at two different times. The spatial coordinates (x, y) of the bodies are given in Astronomical Units (AU). In the first picture, the velocity of the center of mass of the system is zero. Find the magnitude, ds, of the star's displacement. ms -2.2641 x1030 kg mA-2.3179 x1025 kg mB 6.6485 x10 kg mc = 7.8063 x 1027 kg Number AU (0, 1.0957) (0.4995, 1.5929) (0.1581, 0) (-1.4141, 0) (0, 0) c 0-0.5335) (-0.6755, -0.8927)

Explanation / Answer

Both coordinates of Center of mass should be at same location.

So, for x coordinate of Center of mass,

(0.4995*6.6485e26+0.1581*2.3179e28) = (-1.4141*6.6485e26 - 0.6755*7.8063e27+2.2641e30*x)

x =0.004509 AU

Similarly

Now y coordinate of Center of mass,

(1.5929*6.6485e26+1.0957*7.8063e27) = (-0.5335*2.3179e28 - 0.8927*7.8063e27+2.2641e30 y)

y =0.012785 AU

d = sqrt (x^2 +y^2)

= sqrt(0.004509^2 +0.012785^2)

= 0.013557 AU answer