Please show working... If a periodic signal is expressed as an exponential Fouri
ID: 1811012 • Letter: P
Question
Please show working...
Explanation / Answer
f(t) = summation [Dn*e^(Jnwo*t)
a) Dn^ =fouriere series coffiecint of f(t-T)
=(1/T) integtation[ f(t-T)*e^(-njwot)] , .........(1) where t = 0 to T
let t-T =p
then dt = dp , and p = - T to 0
Dn^ = (1/T) integtation[ f(t)e^(-jwot)]
= (1/T) integtation[ f(p)*e^(-jnTwo)*e^(-jwot)]
= e^(-jnTwo)*(1/T) * integtation[ f(p)*e^(-njwop)]
Dn^ =e^(-jnTwo)*Dn
= Dn<(-wonT)
b) f(t) =f(a*t)
Dn^ =(1/T) integtation[ f(a*t)*e^(-jnwot)]
= (1/T) * integtation[ f(p)e^(-jnwoP/*a)]
=
hence f(a*t) =summation [Dn^*e^(Jnwo*t)
=summation [Dn*[e^(Jnwo*t)]^a
=summation [Dn*[e^(J*a*nwo*t)]