An infinitely long, cylindrica insulating shell of inner radius a and outer radi
ID: 2002759 • Letter: A
Question
An infinitely long, cylindrica insulating shell of inner radius a and outer radius b has a uniform volume charge density p. A line of uniform linear charge density is placed Determine the electric field in the following regions (Choose a gaussian cylinder of the she radius r and length L. se any able or symbol stated along the axis of above along with the following as necessary: ke.) (a) r a 3 2 magnitude E Outward direction (b) a r b magnitude E direction no direction x (c) r b magnitude E e direction Select Need Help? Read ItExplanation / Answer
a) from Gauss Law,
flux = E.A = q_inside / e0
for r < a
q_inside = lambda * L
so E ( 2pi r L ) = (lambda*L) / e0
E = (lambda) / 2 pi e0 r
and ke = 1/4pie0 and lambda = linear charge density
E = 2 ke lambda / r
charge is +ve so outward. ........ANS
B) a < r < b
q_inside = (lambda * L ) + (pL * (pi (r^2 - a^2) / (pi (b^2 - a^2))
= (lambda*L + pL(r^2 - a^2)/(b^2 - a^2) )
E ( 2pi r L ) = (lambda*L + pL(r^2 - a^2)/(b^2 - a^2) ) / e0
E = (lambda + p(r^2 - a^2)/(b^2 - a^2) ) / 2 pi e0 r
E = 2 ke ( lambda(b^2 -a^2) + p(r^2 -a^2) ) / (b^2 - a^2)
outward
c) r > b
q_inside = (lambda*L + p pi (b^2 - a^2 )L )
E ( 2pi r L ) = (lambda*L + p pi (b^2 - a^2 )L ) / e0
E = (lambda / 2pi e0 r) + ( p pi (b^2 - a^2) / 2pi e0 r )
E = (2 ke lambda / r ) + ( 2 k3 pi p (b^2 - a^2) / r )