Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Part A: If the mass leaves the end of the spring at a speed of 4.43 class=\"math

ID: 2123941 • Letter: P

Question

Part A: If the mass leaves the end of the spring at a speed of 4.43class="mathjax_preview">m/sstyle="border-left: 0em solid; display: inline-block; overflow: hidden; width: 0px; height: 1.404em; vertical-align: -0.389em;">style="display: inline-block; width: 0px; height: 2.154em;">style="font-family: mathjax_main;" id="mathjax-span-40" class="mi">style="font-family: mathjax_main;" id="mathjax-span-39" class="mo">id="mathjax-span-38" class="mrow">id="mathjax-span-37" class="texatom">style="font-family: mathjax_main;" id="mathjax-span-36" class="mi">id="mathjax-span-35" class="mrow">id="mathjax-span-34" class="texatom">id="mathjax-span-33" class="mrow">style="position: absolute; clip: rect(1.219em, 1000em, 2.588em, -0.529em); top: -2.154em; left: 0em;">style="display: inline-block; position: relative; width: 27px; height: 0px; font-size: 125%;">id="mathjax-span-32" class="math"> , what is the spring constant of the spring?style="" role="textbox" id="mathjax-element-7-frame" class="mathjax">class="type-specific" type="tex">id="yui_3_3_0_23_137615518422073" class="replace-insert done">



held against a spring of spring constant k compressed by a distance d = 28.3cm on a frictionless ramp of length L. The ramp has an angle of 20degrees. A distance x = 1.16m separates the ramp from a landing area that is at the same height as the top of the ramp. If the mass leaves the end of the spring at a speed of 4.43m/s , what is the spring constant of the spring? If the mass reaches the top of the ramp moving at speed 2.81m/s , what is the length of the ramp? Measure the length of the ramp from the starting point (compressed spring) as shown in the picture.

Explanation / Answer

U1 = 1/2kx^2

KE 2 = 1/2mv^2

PE2 = mg (0.283)*sin 20 = 4.951 J

U 1= KE2 +PE2

kx^2 = mv^2 + (2*4.951)

k =( mv^2 + 4.951)/x^2

=((5.22*(4.43)^2) +4.951)/ .283^2


spring constant = 1402.745 N/m

2)

Initial Potential energy = 0.5*K*x^2 = 0.5*1402.745*0.283^2 =56.172 J

final P.E = mgh = mg*L sin 20 = 5.22*9.8*L * sin 20 = 17.496 L


Final K.E = 0.5*m*V'^2 = 0.5*5.22*2.81^2 = 20.608 J

so, P.E1 +K.E1 = P.E2 +K.E2

0 +56.172 = 20.608 +17.496 L

solving L = 2.033 m