Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Part II Sorting Each person will analyze two sorts. 1. Bubble sort (last names w

ID: 2246876 • Letter: P

Question

Part II Sorting

Each person will analyze two sorts.

1. Bubble sort (last names with odd number of letters)

2. Insertion sort (last names with even number of letters)

3. Quick sort (last names with odd number of letters)

4. Merge sort (last names with even number of letters)

In this assignment, we will be learning about, describing, coding, and empirically looking at the work involved in each sorting algorithm. Use 4 data set sizes. Results will be based on execution time for each sort. The size should have a regular increment. For example, using a regular increment of 10,000, you might have sizes of 10,000, 20,000, 30,000, and 40,000. Your data size will be chosen based upon the ability to obtain meaning results.

Submit:

A Word document named SortDescriptionsLastName.docx. The Word document should be modeled after the selection sort description under Course Content. The Word document should have:

A few useful web resources for the sort.

A detailed explanation (in your own words) of the sort.

A clear visual representation of the sort (cite source if found on web, book …).

Two screen shots of your program displaying the sorted array for each sort. These screen shots will not show your entire array but only a part.

An Excel document that shows the empirical results of running each sort. The name of the file should be SortEmpiricalAnalysesLastName.xlsx.

Code for the algorithm in a working program (similar to SelectionSort.cpp).

Code should be documented.

Code should use meaningful identifiers (do not use abbreviated variable names such as r for right).

Code should be well-structured and easy to read.

You should be able to understand every aspect of the code that you are using.

The code for each sort should be organized in its own project folder – a compressed zipped folder for each project. Use only .zip folders (not .rar folder).

Explanation / Answer

HI...Please have a look on the below code

bUBBLE SORT::
// C program for implementation of Bubble sort
#include <stdio.h>

void swap(int *xp, int *yp)
{
int temp = *xp;
*xp = *yp;
*yp = temp;
}

// A function to implement bubble sort
void bubbleSort(int arr[], int n)
{
int i, j;
for (i = 0; i < n-1; i++)

// Last i elements are already in place   
for (j = 0; j < n-i-1; j++)
if (arr[j] > arr[j+1])
swap(&arr[j], &arr[j+1]);
}

/* Function to print an array */
void printArray(int arr[], int size)
{
int i;
for (i=0; i < size; i++)
printf("%d ", arr[i]);
printf("n");
}

// Driver program to test above functions
int main()
{
int arr[] = {64, 34, 25, 12, 22, 11, 90};
int n = sizeof(arr)/sizeof(arr[0]);
bubbleSort(arr, n);
printf("Sorted array: ");
printArray(arr, n);
return 0;
}
--------------------------
INSERTION SORT::-

// C program for insertion sort
#include <stdio.h>
#include <math.h>

/* Function to sort an array using insertion sort*/
void insertionSort(int arr[], int n)
{
int i, key, j;
for (i = 1; i < n; i++)
{
key = arr[i];
j = i-1;

/* Move elements of arr[0..i-1], that are
greater than key, to one position ahead
of their current position */
while (j >= 0 && arr[j] > key)
{
arr[j+1] = arr[j];
j = j-1;
}
arr[j+1] = key;
}
}

// A utility function ot print an array of size n
void printArray(int arr[], int n)
{
int i;
for (i=0; i < n; i++)
printf("%d ", arr[i]);
printf(" ");
}



/* Driver program to test insertion sort */
int main()
{
int arr[] = {12, 11, 13, 5, 6};
int n = sizeof(arr)/sizeof(arr[0]);

insertionSort(arr, n);
printArray(arr, n);

return 0;
}
--------------------------------
QUICK SORT::--
/* C implementation QuickSort */
#include<stdio.h>

// A utility function to swap two elements
void swap(int* a, int* b)
{
int t = *a;
*a = *b;
*b = t;
}

/* This function takes last element as pivot, places
the pivot element at its correct position in sorted
array, and places all smaller (smaller than pivot)
to left of pivot and all greater elements to right
of pivot */
int partition (int arr[], int low, int high)
{
int pivot = arr[high]; // pivot
int i = (low - 1); // Index of smaller element

for (int j = low; j <= high- 1; j++)
{
// If current element is smaller than or
// equal to pivot
if (arr[j] <= pivot)
{
i++; // increment index of smaller element
swap(&arr[i], &arr[j]);
}
}
swap(&arr[i + 1], &arr[high]);
return (i + 1);
}

/* The main function that implements QuickSort
arr[] --> Array to be sorted,
low --> Starting index,
high --> Ending index */
void quickSort(int arr[], int low, int high)
{
if (low < high)
{
/* pi is partitioning index, arr[p] is now
at right place */
int pi = partition(arr, low, high);

// Separately sort elements before
// partition and after partition
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);
}
}

/* Function to print an array */
void printArray(int arr[], int size)
{
int i;
for (i=0; i < size; i++)
printf("%d ", arr[i]);
printf("n");
}

// Driver program to test above functions
int main()
{
int arr[] = {10, 7, 8, 9, 1, 5};
int n = sizeof(arr)/sizeof(arr[0]);
quickSort(arr, 0, n-1);
printf("Sorted array: n");
printArray(arr, n);
return 0;
}
-------------------------------------
MERGE SORT;;--

/* C program for Merge Sort */
#include<stdlib.h>
#include<stdio.h>

// Merges two subarrays of arr[].
// First subarray is arr[l..m]
// Second subarray is arr[m+1..r]
void merge(int arr[], int l, int m, int r)
{
int i, j, k;
int n1 = m - l + 1;
int n2 = r - m;

/* create temp arrays */
int L[n1], R[n2];

/* Copy data to temp arrays L[] and R[] */
for (i = 0; i < n1; i++)
L[i] = arr[l + i];
for (j = 0; j < n2; j++)
R[j] = arr[m + 1+ j];

/* Merge the temp arrays back into arr[l..r]*/
i = 0; // Initial index of first subarray
j = 0; // Initial index of second subarray
k = l; // Initial index of merged subarray
while (i < n1 && j < n2)
{
if (L[i] <= R[j])
{
arr[k] = L[i];
i++;
}
else
{
arr[k] = R[j];
j++;
}
k++;
}

/* Copy the remaining elements of L[], if there
are any */
while (i < n1)
{
arr[k] = L[i];
i++;
k++;
}

/* Copy the remaining elements of R[], if there
are any */
while (j < n2)
{
arr[k] = R[j];
j++;
k++;
}
}

/* l is for left index and r is right index of the
sub-array of arr to be sorted */
void mergeSort(int arr[], int l, int r)
{
if (l < r)
{
// Same as (l+r)/2, but avoids overflow for
// large l and h
int m = l+(r-l)/2;

// Sort first and second halves
mergeSort(arr, l, m);
mergeSort(arr, m+1, r);

merge(arr, l, m, r);
}
}

/* UTILITY FUNCTIONS */
/* Function to print an array */
void printArray(int A[], int size)
{
int i;
for (i=0; i < size; i++)
printf("%d ", A[i]);
printf(" ");
}

/* Driver program to test above functions */
int main()
{
int arr[] = {12, 11, 13, 5, 6, 7};
int arr_size = sizeof(arr)/sizeof(arr[0]);

printf("Given array is ");
printArray(arr, arr_size);

mergeSort(arr, 0, arr_size - 1);

printf(" Sorted array is ");
printArray(arr, arr_size);
return 0;
}


THANKS