Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

If we approximate earth as an ellipsoid, Find the shortest distance between the

ID: 233491 • Letter: I

Question

If we approximate earth as an ellipsoid, Find the shortest distance between the two points below on the surface on that ellipsoid (once for each datum) which are (wgs84 datum) and (NAD27) datum.

Is it the same?

WGS84 datum:

Point A: Latitude = 44.649 .. Longitude = - 63.575 .. Height = 33 m

Point B: Latitude = 69.094 .. Longitude = -139.834 .. Height = 989 m

NAD27 datum:

Point A: Latitude = 44.653 .. Longitude = - 63.574 .. Height = 107.527 m

Point B: Latitude = 69.093 .. Longitude = -139.837 .. Height = 403.383 m

Explanation / Answer

answer- In WGS system

the Point A latitude is 44.649N longtitude -63.57 means 63.57 W altitude 33 m

Point B latitude 69.094N longtude -139.834 or 139.834 W altitude 989m

total the horizontal distance between A and B is 3967km.

vertical difference betwenn these points = 989- 33= 956m = 0.956km

short distance will = 3967km

In NAD 27 datum

point A latitude 44.65N longitude -63.574 or +63.574 W Altitude 107.527m

point B latitude 9.09 N Longitude -139.837 or 139.837 W altitude 40.383

the ditance between A and B would be 4916km