If we approximate earth as an ellipsoid, Find the shortest distance between the
ID: 233491 • Letter: I
Question
If we approximate earth as an ellipsoid, Find the shortest distance between the two points below on the surface on that ellipsoid (once for each datum) which are (wgs84 datum) and (NAD27) datum.
Is it the same?
WGS84 datum:
Point A: Latitude = 44.649 .. Longitude = - 63.575 .. Height = 33 m
Point B: Latitude = 69.094 .. Longitude = -139.834 .. Height = 989 m
NAD27 datum:
Point A: Latitude = 44.653 .. Longitude = - 63.574 .. Height = 107.527 m
Point B: Latitude = 69.093 .. Longitude = -139.837 .. Height = 403.383 m
Explanation / Answer
answer- In WGS system
the Point A latitude is 44.649N longtitude -63.57 means 63.57 W altitude 33 m
Point B latitude 69.094N longtude -139.834 or 139.834 W altitude 989m
total the horizontal distance between A and B is 3967km.
vertical difference betwenn these points = 989- 33= 956m = 0.956km
short distance will = 3967km
In NAD 27 datum
point A latitude 44.65N longitude -63.574 or +63.574 W Altitude 107.527m
point B latitude 9.09 N Longitude -139.837 or 139.837 W altitude 40.383
the ditance between A and B would be 4916km