Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Consider the equation below. (If an answer does not exist, enter DNE.) f ( x ) =

ID: 2851401 • Letter: C

Question

Consider the equation below. (If an answer does not exist, enter DNE.)

f(x) = 2cos2(x)4sin(x),      0x2

(a) Find the interval on which f is increasing. (Enter your answer using interval notation.)

(_______)
Find the interval on which f is decreasing. (Enter your answer using interval notation.)
(_______)
(b) Find the local minimum and maximum values of f.


(c) Find the inflection points.
(x, y) = (_______)

(smaller x-value)

(x, y) = (_______)

(larger x-value)


Find the interval on which f is concave up. (Enter your answer using interval notation.)

(_______)


Find the interval on which f is concave down. (Enter your answer using interval notation.)

(_______)

local minimum value (_______)   local maximum value (_______)  

Explanation / Answer

f(x) = 2cos2(x)4sin(x)

==> f '(x) = 2(2cosx)(-sinx) - 4cosx

==> f '(x) = -4cosxsinx - 4cosx

critical points ==> f '(x) = 0

==> -4cosxsinx - 4cosx = 0

==> -4cosx(sinx +1) = 0

==> cosx = 0 , sinx = -1

==> x = /2 , 3/2

function incresing ==> f '(x) > 0

==> x belongs to (/2 , 3/2 )

function decreasing ==> f '(x) < 0

==> x belongs to (0 , /2) U (3/2, 2)

f(/2) = 2cos2(/2)4sin(/2) = -4

f(3/2) = 2cos2(3/2)4sin(3/2) = 4

Hence local minimum value is -4

Hence local maximum value is 4

f '(x) = -4cosxsinx - 4cosx = -2sin(2x) -4cosx

==> f ''(x) = -2(cos(2x) (2)) -4(-sinx) = -4cos(2x) +4sinx

inflection points ==> f ''(x) = 0

==> -4cos(2x) +4sinx = 0

==> -4(1 -2sin2x) + 4sinx = 0

==> -4 +8sin2x + 4sinx = 0

==> 2sin2x + sinx -1 = 0

==> sinx = [-1 + (1 -4(2)(-1))]/2(2) , [-1 - (1 -4(2)(-1))]/2(2)

==> sinx = [-1 + 3]/2(2) , [-1 - 3]/2(2)

==> sinx = 1/2 , -1

==> x = /6 , 5/6

Hence concave up ==> f ''(x) > 0

==> x belongs to (/6 , 5/6 )

concave down ==> f ''(x) < 0

==> x belongs to (0, /6) U (5/6 ,2)