Consider the function below. (Give your answers correct to three decimal places.
ID: 2866755 • Letter: C
Question
Consider the function below. (Give your answers correct to three decimal places. If you need to use -infinity or infinity, enter -INFINITY or INFINITY.) h(x) = 7x^5 - 12x3^ + x (a) Find the intervals of increase.(Enter the intervals that contain smaller numbers first.) Find the intervals of decrease. (Enter the interval that contains smaller numbers first.) (b) Find the local minimum values. Find the local maximum values. (c) Find the inflection points. Find the intervals the function is concave up. (Enter the interval that contains smaller numbers first.) Find the intervals the function is concave down. (Enter the interval that contains smaller numbers first.) (d) Use this information to sketch the graph of the function. (Do this on paper. Your instructor may ask you to turn in this graph.)Explanation / Answer
h(x) = 7x^5 - 12x^3 + x
Deriving :
h'(x) = 35x^4 - 36x^2 + 1 = 0 ---> to find the critical points
(35x^2 - 1)(x^2 - 1) = 0
x^2 = 1 and x^2 = 1/35
So, -1 , -1/sqrt35 , 1/sqrt35 , 1 are the critical values
So, this splits the number line into (-inf , -1) , (-1 , -1/sqrt35) , (-1/sqrt35 , 1/sqrt35) ,(1/sqrt35 , 1) and (1 , infinity)
Region 1 : (-inf , -1)
Testvalue = -2
h'(x) = 35x^4 - 36x^2 + 1
h'(-2) = 35(-2)^4 - 36(-2)^2 + 1
h(-2) = 417 --> posiitve --> increasing
Region2 : (-1 , -1/sqrt35) --> decreasing
Region 3 : (-1/sqrt35 , 1/sqrt35) --> increasing
Region 4 : (1/sqrt35 , 1) --> decreasing
Region 5 : (1 , infinity) --> increasing
So, increase : (-inf , -1) U (-1/sqrt35 , 1/sqrt35) U (1 , infinity) ----> ANSWER
Decrease : (-1 , -1/sqrt35) U (1/sqrt35 , 1) -----> ANSWER
-----------------------------------------------------------------------------
b) Lets plug in the critical numbers into the function
h(x) = 7x^5 - 12x^3 + x
h(-1) = 4
h(-1/sqrt(35)) = -0.112
h(1/sqrt(35)) = 0.112
h(1) = -4
So, local minimum values :
-1/sqrt(35) ---> ANSWER
1 --> ANSWER
Local maximum values :
-1 ---> ANSWER
1/sqrt(35) ---> ANSWER
---------------------------------------------------------------------------------
c) Inflection pts :
h'(x) = 35x^4 - 36x^2 + 1
Deriving again :
h''(x) = 140x^3 - 72x = 0
4x(35x^2 - 18) = 0
4x = 0 , 35x^2 - 18 = 0
x = 0 , x = +/- sqrt(18/35)
So, inflection points are :
-3sqrt(2/35) ---> ANSWER
0 ---> ANSWER
3sqrt(2/35) --> ANSWER
-----------------------------------------------------------------------------------
d) Concavity :
From the inflections, the number line is split as (-infinity , -3sqrt(2/35)) , (-3sqrt(2/35)) , 0) , (0 , 3srt(2/35)) and (3sqrt(2/35)) , infinity)
Region 1 : (-infinity , -3sqrt(2/35))
Testvalue = -4
h''(x) = 140x^3 - 72x
h''(-4) = -8672 --> negative
So, concave down
So, by testing similarly, we get the concavity as follows :
Concave up :
(-3sqrt(2/35)) , 0) U (3sqrt(2/35)) , infinity) ---> ANSWER
Concave down :
(-infinity , -3sqrt(2/35)) U (0 , 3srt(2/35)) ---> ANSWER