Please answer the following questions about the function Please answer the follo
ID: 2867038 • Letter: P
Question
Please answer the following questions about the function
Explanation / Answer
f(x) = (x^2 + 10)(9 - x^2)
f(x) = -x^4 + 9x^2 - 10x^2 + 90
f(x) = -x^4 - x^2 + 90
a)
f'(x) = -4x^3 - 2x = 0
4x^3 + 2x = 0
2x(2x^2 + 1) = 0
2x = 0 , 2x^2 + 1 = 0
x = 0 ---> this is the only critical value
f''(x) = -12x^2 - 2
f''(0) = -2 ---> negative
So, x = 0 corresponds to LOCAL MAXIMUM
When x = 0, y = (x^2 + 10)(9 - x^2) becomes y = (0 + 10)(9 - 0) ---> y = 90
No local minimum value exists
Critical value, x = 0
So, the regions become (-inf , 0) and (0 ,inf)
Region 1 : (-inf , 0)
Testvalue = -1
f'(x) = -4x^3 - 2x
f'(-1) = 4 + 2
f'(-1) = 6 --> positive
So, increasing over (-inf , 0)
Region 2 : (0 , inf)
Testvalue = 1
f'(x) = -4x^3 - 2x
f'(1) = -4 - 2
f'(1) = -6 --> negative
So, decreasing over (0 , inf)
So, here are the answers :
Critical numbers, x = 0 ---> ANSWER
Increasing : (-inf , 0) --> ANSWER
Decreasing : (0 , inf) --> ANSWER
Local maxima, x = 0 --> ANSWER
Local minima, x = None --> ANSWER
---------------------------------------------------------------------------
b)
f''(x) = -12x^2 - 2 = 0
12x^2 = -2
x^2 = -2/12
x^2 = -1/6
No solution
So, no inflection points
So, region is (-inf , inf)
Testvalue = 0
f''(x) = -12x^2 - 2
f''(0) = -2 --> negative
So, concave down everywhere
Concave up nowhere
Concave up : None ---> ANSWER
Concave down : (-inf , inf) --> ANSWER
Inflection points, x = NONE --> ANSWER
--------------------------------------------------------------------------
c)
f(x) = (x^2 + 10)(9 - x^2)
This is a polynomial function, which NEVER has any asympttoes
So, horizontal asymptotes : y = NONE --> ANSWER
Vertical asymptotes, x = NONE --> ANSWER