Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Absolute Max & Min? QUESTION 1 4x4.x [-2,2] A. Absolute maximum: 6, absolute min

ID: 2871360 • Letter: A

Question

Absolute Max & Min?

QUESTION 1 4x4.x [-2,2] A. Absolute maximum: 6, absolute minimum: 2 C) B. Absolute maximum : 6, absolute minimum C. Absolute maximum: 2, absolute minimum : C) D. Absolute maximum: , absolute minimum- QUESTION 2 f(x)x416x 1 I-9, 0] 475 A Absolute maximum:bsolute minimum: 550 347 27 B. Absolute maximum: ' absolute minimum:-908 C.Absolute maximum: -908, absolute minimum D. There are no absolute extrema. 347 27 QUESTION 3 f(x) = 6x + 2: [-1, 2] A. There are no absolute extrema. B. Absolute maximum: 14, absolute minimum:-4 C.Absolute maximum:-1, absolute minimum: 2 D.Absolute maximum: 12, absolute minimum: -6 QUESTION 4 f(x) 4 - 5 [-5, 5] "Absolute maximum: 1250, absolute minimum:-10 256 B. Absolute maximum: 1250, absolute minimum: 0 C. Absolute maximum: 625, absolute minimum:-16875 256 C) D-Absolute maximum: O, absolute minimum: _10_ 16875 256 QUESTION 5 16 x f(x) = x + ; [-7,-1] A. Absolute maximum: -8, absolute minimum: -15 65 ·Absolute maximum: -8, absolute minimum: -- O c. Absolute maximum:-65, absolute minimum:-17 D. Absolute maximum: -8, absolute minimum 17

Explanation / Answer

1)f(x) =(1/4)x4-x

f'(x) =(1/4)*4x3-1=0==>x3-1=0==>x=1

f(1) =(1/4)-1=-3/4

f(-2) =(1/4)*16 +2==>4+2==>6

f(2) =(1/4)*16 -2==>4-2==>2

absolute minimum =-3/4 at x=1

absolute maximum =6 at x=-2

optionB