Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Consider the following time series data. 8 b.) Use the following dummy variables

ID: 2908528 • Letter: C

Question

Consider the following time series data.

8

b.) Use the following dummy variables to develop an estimated regression equation to account for any seasonal and linear trend effects in the data: Qtr1 = 1 if Quarter 1, 0 otherwise; Qtr2 = 1 if Quarter 2, 0 otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise (to 3 decimals if necessary).

Value = ____ +____ Qtr1____ -   Qtr2____ -   Qtr3____ +   t

Compute the quarterly forecasts for next year (to 2 decimals).

Quarter Year 1Year2 Year 3 1 4 6 7 2 2 3 6 3 3 5 6 4 5 7

8

b.) Use the following dummy variables to develop an estimated regression equation to account for any seasonal and linear trend effects in the data: Qtr1 = 1 if Quarter 1, 0 otherwise; Qtr2 = 1 if Quarter 2, 0 otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise (to 3 decimals if necessary).

Value = ____ +____ Qtr1____ -   Qtr2____ -   Qtr3____ +   t

Compute the quarterly forecasts for next year (to 2 decimals).

Quarter 1 forecast Quarter 2 forecast Quarter 3 forecast Quarter 4 forecast

Explanation / Answer

Result:

b.) Use the following dummy variables to develop an estimated regression equation to account for any seasonal and linear trend effects in the data: Qtr1 = 1 if Quarter 1, 0 otherwise; Qtr2 = 1 if Quarter 2, 0 otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise (to 3 decimals if necessary).

Value = 3.147 +(-1)*Qtr1+(-3) *Qtr2+(-2)* Qtr3 +  1.625* t

Compute the quarterly forecasts for next year (to 2 decimals).

Quarter 1 forecast

8.92

Quarter 2 forecast

6.92

Quarter 3 forecast

7.92

Quarter 4 forecast

9.92

Recoded data

value

t

Qtr1

Qtr2

Qtr3

4

1

1

0

0

2

1

0

1

0

3

1

0

0

1

5

1

0

0

0

6

2

1

0

0

3

2

0

1

0

5

2

0

0

1

7

2

0

0

0

7

3

1

0

0

6

3

0

1

0

6

3

0

0

1

8

3

0

0

0

Regression Analysis

0.959

Adjusted R²

0.936

n

12

R

0.979

k

4

Std. Error

0.469

Dep. Var.

value

ANOVA table

Source

SS

df

MS

F

p-value

Regression

36.1250

4  

9.0313

41.01

.0001

Residual

1.5417

7  

0.2202

Total

37.6667

11  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=7)

p-value

95% lower

95% upper

Intercept

3.4167

0.4284

7.975

.0001

2.4036

4.4297

t

1.6250

0.1659

9.794

2.45E-05

1.2327

2.0173

Qtr1

-1.0000

0.3832

-2.610

.0349

-1.9061

-0.0939

Qtr2

-3.0000

0.3832

-7.829

.0001

-3.9061

-2.0939

Qtr3

-2.0000

0.3832

-5.220

.0012

-2.9061

-1.0939

Predicted values for: value

95% Confidence Intervals

95% Prediction Intervals

t

Qtr1

Qtr2

Qtr3

Predicted

lower

upper

lower

upper

Leverage

4

1

0

0

8.917

7.904

9.930

7.414

10.419

0.833

4

0

1

0

6.917

5.904

7.930

5.414

8.419

0.833

4

0

0

1

7.917

6.904

8.930

6.414

9.419

0.833

4

0

0

0

9.917

8.904

10.930

8.414

11.419

0.833

Quarter 1 forecast

8.92

Quarter 2 forecast

6.92

Quarter 3 forecast

7.92

Quarter 4 forecast

9.92