Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Consider a system with the state and output equations: [ q\'1 ] [ 2 0 0 ] [ q1]

ID: 2988576 • Letter: C

Question

Consider a system with the state and output equations:

[ q'1 ]     [ 2      0     0 ] [ q1]    [ 0 1 ]                                                   [ q1 ]

[ q'2 ] = [ 1     -2     0 ] [ q2 ] + [ 1 0 ] [ x1(t) ]     and     [ y1 ] = [ 1 2 0 ] [ q2 ] + [ 0 -1] [ x1(t) ]

[ q'3 ]    [ 0    0.5   -1 ] [ q3 ]    [1 -1 ] [ x2(t) ]               [ y2 ]    [ 0 1 -2 ] [ q3 ]    [ 1   0] [ x2(t) ]

a. Solve for the vector q(t) and the transfer function matrix H(s), and display the results.

b. Determine the output y2(t) in response to the input x1(t).

Explanation / Answer

MATLAB code ->

a = [2,0,0;1,-2,0;0,0.5,-1];
b = [0,1;1,0;1,-1];
c = [1,2,0;0,1,-2];
d = [0,-1;1,0];
sys_ss = ss(a,b,c,d);
disp('a:')
H = tf(sys_ss)
H21 = [cell2mat(H(2,1).num);cell2mat(H(2,1).den)];
syms s t
F = (H21(1,1)*s^2 + H21(1,2)*s + H21(1,3)) / (H21(2,1)*s^2 + H21(2,2)*s + H21(2,3));
disp('b:')
y2_x1 = ilaplace(F, s, t)
clear a b c d sys_ss H H21 s t F y2_x1

Output ->

a:

H =

From input 1 to output...
         2
   1: -----
       s + 2

       s^2 + 2 s - 2
   2: -------------
       s^2 + 3 s + 2

From input 2 to output...
       -s^2 + s + 8
   1: ------------
         s^2 - 4

          2 s^2 + s - 8
   2: -------------------
       s^3 + s^2 - 4 s - 4

Continuous-time transfer function.

b:

y2_x1 =

2*exp(-2*t) - 3*exp(-t) + dirac(t)