Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

An estimate of the percentage of defective pins in a large batch of pins supplie

ID: 3023453 • Letter: A

Question

An estimate of the percentage of defective pins in a large batch of pins supplied by a vendor is desired to be estimated within 1% with a 90% confidence level. The actual percentage of defective pins is guessed to be 4%.

a) What is the minimum sample size (n) required to satisfy this requirement?

b) If the actual percentage of defective pins may be anywhere between 3% and 6%, tabulate the minimum sample size required for actual percentages from 3% to 6%.

c) If the cost of sampling and testing n pins is (25+6n) dollars, tabulate the cost for the same range of percentages as in part (b).

Explanation / Answer

a)

Note that      
      
n = z(alpha/2)^2 p (1 - p) / E^2      
      
where      
      
alpha/2 =    0.05  
       
      
Using a table/technology,      
      
z(alpha/2) =    1.644853627  
      
Also,      
      
E =    0.01  
p =    0.04  
      
Thus,      
      
n =    1038.928686  
      
Rounding up,      
      
n =    1039   [ANSWER]

***************

b)

For p^ = 0.03:

Note that      
      
n = z(alpha/2)^2 p (1 - p) / E^2      
      
where      
      
alpha/2 =    0.05  
       
      
Using a table/technology,      
      
z(alpha/2) =    1.644853627  
      
Also,      
      
E =    0.01  
p =    0.03  
      
Thus,      
      
n =    787.3131451  
      
Rounding up,      
      
n =    788  

For p^ = 0.05:

Note that      
      
n = z(alpha/2)^2 p (1 - p) / E^2      
      
where      
      
alpha/2 =    0.05  
       
      
Using a table/technology,      
      
z(alpha/2) =    1.644853627  
      
Also,      
      
E =    0.01  
p =    0.05  
      
Thus,      
      
n =    1285.133141  
      
Rounding up,      
      
n =    1286  

For p^ = 0.06:

Note that      
      
n = z(alpha/2)^2 p (1 - p) / E^2      
      
where      
      
alpha/2 =    0.05  
       
      
Using a table/technology,      
      
z(alpha/2) =    1.644853627  
      
Also,      
      
E =    0.01  
p =    0.06  
      
Thus,      
      
n =    1525.926508  
      
Rounding up,      
      
n =    1526  

Hence, the table:

[ANSWER]

***************************

c)

[ANSWER]

p^ n 0.03 788 0.04 1039 0.05 1286 0.06 1526