Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Inspection of the following table of correlation coefficients for variables in a

ID: 3046393 • Letter: I

Question

Inspection of the following table of correlation coefficients for variables in a multiple regression analysis reveals potential multicollinearity with variables:

y

x1

x2

x3

x4

x5

y

1

x1

0.854168

1

x2

-0.11828

-0.00383

1

x3

-0.12003

-0.08499

-0.14523

1

x4

0.525901

0.118169

-0.14876

0.050042

1

x5

-0.18105

-0.07371

0.995886

-0.14151

-0.16934

1

X1 and X4

X3 and X4

X2 and X5

X2 and X4

y

x1

x2

x3

x4

x5

y

1

x1

0.854168

1

x2

-0.11828

-0.00383

1

x3

-0.12003

-0.08499

-0.14523

1

x4

0.525901

0.118169

-0.14876

0.050042

1

x5

-0.18105

-0.07371

0.995886

-0.14151

-0.16934

1

Explanation / Answer

y

x1

x2

x3

x4

x5

y

1

x1

0.854168

1

x2

-0.11828

-0.00383

1

x3

-0.12003

-0.08499

-0.14523

1

x4

0.525901

0.118169

-0.14876

0.050042

1

x5

-0.18105

-0.07371

0.995886

-0.14151

-0.16934

1

y

x1

x2

x3

x4

x5

y

1

x1

0.854168

1

x2

-0.11828

-0.00383

1

x3

-0.12003

-0.08499

-0.14523

1

x4

0.525901

0.118169

-0.14876

0.050042

1

x5

-0.18105

-0.07371

0.995886

-0.14151

-0.16934

1

Multicollinearity means strong correlation between two independent variables.

From above table

The correlation between X2 and X5 is 0.9959

Hence there is a strong multicollinearity between X2 and X5

y

x1

x2

x3

x4

x5

y

1

x1

0.854168

1

x2

-0.11828

-0.00383

1

x3

-0.12003

-0.08499

-0.14523

1

x4

0.525901

0.118169

-0.14876

0.050042

1

x5

-0.18105

-0.07371

0.995886

-0.14151

-0.16934

1