Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

An engineer suspects that the surface finish of a metal part is influenced by th

ID: 3055496 • Letter: A

Question

An engineer suspects that the surface finish of a metal part is influenced by the feed rate and the depth of cut.He selects three feed rates and four depths of cut.He then conducts a factorial experiment and obtains the following data:

Depth of Cut

Feed Rate

Surface Finish

1

0.15

0.2

74

2

0.15

0.2

64

3

0.15

0.2

58

4

0.18

0.2

79

5

0.18

0.2

68

6

0.18

0.2

73

7

0.2

0.2

82

8

0.2

0.2

86

9

0.2

0.2

92

10

0.25

0.2

99

11

0.25

0.2

104

12

0.25

0.2

96

13

0.15

0.25

92

14

0.15

0.25

86

15

0.15

0.25

88

16

0.18

0.25

98

17

0.18

0.25

104

18

0.18

0.25

86

19

0.2

0.25

99

20

0.2

0.25

104

21

0.2

0.25

95

22

0.25

0.25

104

23

0.25

0.25

112

24

0.25

0.25

99

25

0.15

0.3

98

26

0.15

0.3

98

27

0.15

0.3

102

28

0.18

0.3

104

29

0.18

0.3

99

30

0.18

0.3

95

31

0.2

0.3

108

32

0.2

0.3

112

33

0.2

0.3

99

34

0.25

0.3

114

35

0.25

0.3

107

36

0.25

0.3

111

a- Perform an Analysis of Variance (ANOVA) on the response variable of Surface Finish, and draw conclusions.Use alpha = .05

Depth of cut is not significant, and feed rate is significant

Depth of cut is significant, and feed rate is significant

Depth of cut is not significant, and feed rate is not significant

Depth of cut is significant, and feed rate is not significant

b- What is the p-value for feed rate?

c- What is the p-value for depth of cut?

d- Plot the residuals on a normal probability scale. Does the residual analysis appear satisfactory (Normal Distribution)?

          Is the residual Normal:  Yes or No

1- Yes, the residuals are a Normal Distribution

2- No, the residuals are not a Normal Distribution

Depth of Cut

Feed Rate

Surface Finish

1

0.15

0.2

74

2

0.15

0.2

64

3

0.15

0.2

58

4

0.18

0.2

79

5

0.18

0.2

68

6

0.18

0.2

73

7

0.2

0.2

82

8

0.2

0.2

86

9

0.2

0.2

92

10

0.25

0.2

99

11

0.25

0.2

104

12

0.25

0.2

96

13

0.15

0.25

92

14

0.15

0.25

86

15

0.15

0.25

88

16

0.18

0.25

98

17

0.18

0.25

104

18

0.18

0.25

86

19

0.2

0.25

99

20

0.2

0.25

104

21

0.2

0.25

95

22

0.25

0.25

104

23

0.25

0.25

112

24

0.25

0.25

99

25

0.15

0.3

98

26

0.15

0.3

98

27

0.15

0.3

102

28

0.18

0.3

104

29

0.18

0.3

99

30

0.18

0.3

95

31

0.2

0.3

108

32

0.2

0.3

112

33

0.2

0.3

99

34

0.25

0.3

114

35

0.25

0.3

107

36

0.25

0.3

111

Explanation / Answer

We use minitab to solve this question.

Minitab Output-

Regression Analysis: Surface Finish versus Depth of Cut, Feed Rate

Analysis of Variance

Source        DF Adj SS Adj MS      F-Value P-Value
Regression      2          5231.8 2615.92 56.40    0.000
Depth of Cut    1    2149.2 2149.17       46.34    0.000
Feed Rate                 1    3082.7 3082.67 66.47    0.000
Error                          33 1530.5    46.38
Lack-of-Fit    9     777.8        86.42       2.76 0.023
Pure Error              24    752.7    31.36
Total                         35 6762.3

Coefficients

Term             Coef        SE Coef T-Value P-Value    VIF
Constant       -3.92   9.30           -0.42    0.676
Depth of Cut 212.3        31.2            6.81             0.000 1.00
Feed Rate     226.7       27.8             8.15             0.000        1.00


Regression Equation

Surface Finish = -3.92 + 212.3 Depth of Cut + 226.7 Feed Rate

________________________________________________________________________________________________

a)

From the analysis of variance on the response variable of surface finish,

b)

P-value for Depth of cut is 0.000 < 0.05 indicate significance.

c)

P-value for feed rate is 0.000 < 0.05 indicate significance.

Therefore,

a)

Depth of cut is significant, and feed rate is significant.

d)

From the plot of the residuals on a normal probability scale shown below, Observe that all points lies within the stright line therefore it shows normality.

1) Yes, the residulas are a Normal Distribution.