Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

IBM employs a network of expert analytics consultants for various projects. To h

ID: 3059416 • Letter: I

Question

IBM employs a network of expert analytics consultants for various projects. To help it determine how to distribute its bonuses, IBM wants to form groups of employees with similar performance according to key performance metrics. Each observation (corresponding to an employee) in the file BigBlue consists of values for: (1) UsageRate which corresponds to the proportion of time that the employee has been actively working on high priority projects, (2) Recognition which is the number of projects for which the employee was specifically requested, and (3) Leader which is the number of projects on which the employee has served as project leader.

Apply k-means clustering with for values of k = 2,. . . ., 7. Be sure to Normalize Input Data and specify 50 iterations and 10 random starts in Step 2 of the XLMiner k-Means Clustering procedure.

EmployeeID UsageRate Recognition Leader 1 0% 0 0 2 63% 0 0 3 0% 0 0 4 0% 0 0 5 0% 0 0 6 3% 0 0 7 38% 0 0 8 94% 1 0 9 2% 0 0 10 8% 0 0 11 26% 0 0 12 3% 0 0 13 3% 0 0 14 83% 1 0 15 87% 1 0 16 46% 0 0 17 18% 0 0 18 6% 0 0 19 19% 0 0 20 1% 0 0 21 43% 0 0 22 16% 0 0 23 0% 0 0 24 1% 0 0 25 16% 0 0 26 7% 0 0 27 14% 0 0 28 45% 0 0 29 0% 0 0 30 0% 0 0 31 12% 0 0 32 3% 0 0 33 15% 0 0 34 28% 0 0 35 88% 2 0 36 58% 2 0 37 1% 0 0 38 13% 0 0 39 0% 0 0 40 12% 0 0 41 5% 0 0 42 19% 0 0 43 3% 0 0 44 92% 0 0 45 38% 0 0 46 2% 0 0 47 74% 0 0 48 6% 0 0 49 0% 0 0 50 15% 0 0 51 5% 0 0 52 24% 0 0 53 1% 0 0 54 0% 0 0 55 4% 0 0 56 0% 0 0 57 18% 0 0 58 7% 0 0 59 86% 1 0 60 85% 0 0 61 18% 0 0 62 19% 0 0 63 18% 0 0 64 25% 0 0 65 6% 0 0 66 3% 0 0 67 65% 3 0 68 91% 2 0 69 63% 2 0 70 7% 0 0 71 41% 0 0 72 12% 0 0 73 27% 0 0 74 53% 0 0 75 5% 0 0 76 29% 0 0 77 61% 0 0 78 76% 2 1 79 80% 3 0 80 82% 4 0 81 89% 0 0 82 23% 0 0 83 35% 0 0 84 69% 1 0 85 48% 1 0 86 99% 3 2 87 2% 0 0 88 72% 0 0 89 11% 0 0 90 5% 0 0 91 69% 0 0 92 1% 0 0 93 48% 0 0 94 2% 0 0 95 16% 0 0 96 67% 0 0 97 71% 0 0 98 95% 3 2 99 61% 1 0 100 14% 0 0 101 90% 1 0 102 1% 0 0 103 48% 1 0 104 54% 3 1 105 74% 2 0 106 23% 0 0 107 2% 0 0 How many clusters do you recommend using to categorize the employees? Five - Select your answer- Two Ilratlk«i, Inui may bee rviewexi l cI Four Five Six Seven

Explanation / Answer

IBM employs a network of expert analytics consultants for various projects. To help it determine how to distribute its bonuses, IBM wants to form groups of employees with similar performance according to key performance metrics. Each observation (corresponding to an employee) in the file BigBlue consists of values for: (1) UsageRate which corresponds to the proportion of time that the employee has been actively working on high priority projects, (2) Recognition which is the number of projects for which the employee was specifically requested, and (3) Leader which is the number of projects on which the employee has served as project leader.

Apply k-means clustering with for values of k = 2,. . . ., 7. Be sure to Normalize Input Data and specify 50 iterations and 10 random starts in Step 2 of the XLMiner k-Means Clustering procedure.

EmployeeID UsageRate Recognition Leader 1 0% 0 0 2 63% 0 0 3 0% 0 0 4 0% 0 0 5 0% 0 0 6 3% 0 0 7 38% 0 0 8 94% 1 0 9 2% 0 0 10 8% 0 0 11 26% 0 0 12 3% 0 0 13 3% 0 0 14 83% 1 0 15 87% 1 0 16 46% 0 0 17 18% 0 0 18 6% 0 0 19 19% 0 0 20 1% 0 0 21 43% 0 0 22 16% 0 0 23 0% 0 0 24 1% 0 0 25 16% 0 0 26 7% 0 0 27 14% 0 0 28 45% 0 0 29 0% 0 0 30 0% 0 0 31 12% 0 0 32 3% 0 0 33 15% 0 0 34 28% 0 0 35 88% 2 0 36 58% 2 0 37 1% 0 0 38 13% 0 0 39 0% 0 0 40 12% 0 0 41 5% 0 0 42 19% 0 0 43 3% 0 0 44 92% 0 0 45 38% 0 0 46 2% 0 0 47 74% 0 0 48 6% 0 0 49 0% 0 0 50 15% 0 0 51 5% 0 0 52 24% 0 0 53 1% 0 0 54 0% 0 0 55 4% 0 0 56 0% 0 0 57 18% 0 0 58 7% 0 0 59 86% 1 0 60 85% 0 0 61 18% 0 0 62 19% 0 0 63 18% 0 0 64 25% 0 0 65 6% 0 0 66 3% 0 0 67 65% 3 0 68 91% 2 0 69 63% 2 0 70 7% 0 0 71 41% 0 0 72 12% 0 0 73 27% 0 0 74 53% 0 0 75 5% 0 0 76 29% 0 0 77 61% 0 0 78 76% 2 1 79 80% 3 0 80 82% 4 0 81 89% 0 0 82 23% 0 0 83 35% 0 0 84 69% 1 0 85 48% 1 0 86 99% 3 2 87 2% 0 0 88 72% 0 0 89 11% 0 0 90 5% 0 0 91 69% 0 0 92 1% 0 0 93 48% 0 0 94 2% 0 0 95 16% 0 0 96 67% 0 0 97 71% 0 0 98 95% 3 2 99 61% 1 0 100 14% 0 0 101 90% 1 0 102 1% 0 0 103 48% 1 0 104 54% 3 1 105 74% 2 0 106 23% 0 0 107 2% 0 0 How many clusters do you recommend using to categorize the employees? Five - Select your answer- Two Ilratlk«i, Inui may bee rviewexi l cI Four Five Six Seven