Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

I\'m reviewing for my first midterm and this is an old HW problems that I wasn\'

ID: 3124796 • Letter: I

Question

I'm reviewing for my first midterm and this is an old HW problems that I wasn't able to solve. Please show your work, and be as clear as possible. Thanks!

6. Let F be an RV that represents the operating temperature in Fahrenheit of one instance of a manufacturing process, and let F ~ N(90,52). Let C be an RV that represents the same process, but measured in Celsius. Fahrenheit can be converted to Celsius using C(F-32). Using the table provided, solve for the following ( it's not a bad idea to double check your answers using R ) (a) Find the probability that one randomly selected instance of the process will have operating temperature greater than 93.8 Fahrenheit (b) Find the distribution of C. (Hint: C~?(?,?) (c) Find the probability that one randomly selected instance of the process will have operating temperature below 29 Celsius.

Explanation / Answer

a)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    93.8      
u = mean =    90      
          
s = standard deviation =    5      
          
Thus,          
          
z = (x - u) / s =    0.76      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   0.76   ) =    0.223627292 [ANSWER]

*********************

b)

As

C = (5/9)(F-32)

Then

u(C) = 5/9 u(F) - (5/9)(32) = (5/9)*90 - (5/9)*32 = 32.22222222

sigma^2(C) = (5/9)^2 (5^2) = 7.716049383

Thus,

C ~ (32.22222, 7.71604) [ANSWER]

********************

c)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    29      
u = mean =    32.2222222      
          
s = standard deviation = sqrt(7.716049) =   2.777777778      
          
Thus,          
          
z = (x - u) / s =    -1.159999992      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   -1.159999992   ) =    0.123024405 [ANSWER]