Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The scores of 12th-grade students on the National Assessment of Educational Prog

ID: 3126317 • Letter: T

Question

The scores of 12th-grade students on the National Assessment of Educational Progress year 2000 mathematics test have a distribution that is approximately Normal with mean = 308 and standard deviation = 38.

Choose one 12th-grader at random. What is the probability (±0.1) that his or her score is higher than 308? _____

Higher than 346 (±0.001)? _____

Now choose an SRS of 4 twelfth-graders and calculate their mean score x. If you did this many times, what would be the mean of all the x-values? _____

What would be the standard deviation (±0.1) of all the x-values? _____


What is the probability that the mean score for your SRS is higher than 308? (±0.1) _____   Higher than 346? (±0.0001) _____

Explanation / Answer

A)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    308      
u = mean =    308      
          
s = standard deviation =    38      
          
Thus,          
          
z = (x - u) / s =    0      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   0   ) =    0.5 [ANSWER]

******************

b)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    346      
u = mean =    308      
          
s = standard deviation =    38      
          
Thus,          
          
z = (x - u) / s =    1      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   1   ) =    0.158655254 [answer]

********************

c)

It will have the same mean,

u(X) = 308 [ANSWER]

******************

d)

The standard deviation will decrease by a factor of sqrt(n),

sigma(X) = sigma/sqrt(n) = 38/sqrt(4) = 19 [ANSWER]

*********************

e)

We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
          
x = critical value =    308      
u = mean =    308      
n = sample size =    4      
s = standard deviation =    38      
          
Thus,          
          
z = (x - u) * sqrt(n) / s =    0      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   0   ) =    0.5 [ANSWER]

**************************

f)


We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
          
x = critical value =    346      
u = mean =    308      
n = sample size =    4      
s = standard deviation =    38      
          
Thus,          
          
z = (x - u) * sqrt(n) / s =    2      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   2   ) =    0.022750132 [ANSWER]