Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

An entrepreneur in a developing country owns 10 food carts. He has ten employees

ID: 3151282 • Letter: A

Question

An entrepreneur in a developing country owns 10 food carts. He has ten employees to work with these food carts. Let Xi be a random variable representing revenue from cart i (on a particular day), i = 1,..., 10. Xi is approximately normally distributed with mean $35, and variance 64 (squared dollars). Revenues of the different carts are independent.

In this question the cumulative distribution function of the standard normal random variable is denoted by F(.).

--------------------------------------------------------------------------------------------------------------

What is the probability that cart i will generate revenue less than $30 on a particular day?

A. F(1.97)

B. 1-F(0.625)

C. F(0.625)

D. 1-F(1.97)

What is the probability that average revenue will be less than $30 on a particular day?

A. F(1.97)

B. 1-F(0.625)

C. F(0.625)

D. 1-F(1.97)

How many carts would the entrepreneur have to own in order for the probability to be at least 0.90 that average revenue on a particular day will be between $33 and $37?

A. 44

B. 7

C. 49

D. 64

Explanation / Answer

1.

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    30      
u = mean =    35      
          
s = standard deviation = sqrt(64) =   8      
          
Thus,          
          
z = (x - u) / s =    -0.625      
          
By symmetry, the left tailed area is

P(z<-0.625) = 1 - F(0.625) [ANSWER, B]

***************************

2.

We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
          
x = critical value =    30      
u = mean =    35      
n = sample size =    10      
s = standard deviation =    8      
          
Thus,          
          
z = (x - u) * sqrt(n) / s =    -1.976423538      

By symmetry, the left tailed area is

P(z<-1.97) = 1 - F(1.97) [ANSWER, D]

***********************

3.

That means a margin of error of +/- 2 from the mean.

Note that      
      
n = z(alpha/2)^2 s^2 / E^2      
      
where      
      
alpha/2 = (1 - confidence level)/2 = (1-0.90)/2 =   0.05  
      
Using a table/technology,      
      
z(alpha/2) =    1.644853627  
      
Also,      
      
s = sample standard deviation =    8  
E = margin of error =    2  
      
Thus,      
      
n =    43.28869527  
      
Rounding up,      
      
n =    44   [ANSWER, A]