Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Could you please tell me how to solve this question on an excel sheet using the

ID: 3176613 • Letter: C

Question

Could you please tell me how to solve this question on an excel sheet using the regression feature?

After declining over the last century, the percentage of men aged 65 and older in the workforce has begun to rise in recent years, as shown by table below:

a.)Using the regression feature in Excel, find a cubic and a quartic function that model this data, letting t=0 correspond to the year 1900.

b.)Using each of your answers to part (a), find the rate that the percent of men aged 65 and older in the workforce was increasing in 2005.

c.(Discuss which model from part (a) best describes the data, as well as which answer from part (b) best describes the rate that the percent of men aged 65 and older in the workforce was increasing in 2005.

Year

Percent of Men 65 and Older in Workforce

1900

63.1

1920

55.6

1930

54.0

1940

41.8

1950

45.8

1960

33.1

1970

26.8

1980

19.0

1990

16.3

2000

17.7

2010

20.5

Year

Percent of Men 65 and Older in Workforce

1900

63.1

1920

55.6

1930

54.0

1940

41.8

1950

45.8

1960

33.1

1970

26.8

1980

19.0

1990

16.3

2000

17.7

2010

20.5

Explanation / Answer

First of all, we would calculate x^1, x^2 and also x^3 to find quartic and cubic regression.

Year

Percent of Men 65 and Older in Workforce (y)

x

x^1

x^2

x^3

1900

63.1

0

0

0

0

1920

55.6

20

20

400

8000

1930

54

30

30

900

27000

1940

41.8

40

40

1600

64000

1950

45.8

50

50

2500

125000

1960

33.1

60

60

3600

216000

1970

26.8

70

70

4900

343000

1980

19

80

80

6400

512000

1990

16.3

90

90

8100

729000

2000

17.7

100

100

10000

1000000

2010

20.5

110

110

12100

1331000

Quartic

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.964726

R Square

0.930696

Adjusted R Square

0.913371

Standard Error

5.02695

Observations

11

ANOVA

df

SS

MS

F

Significance F

Regression

2

2714.887

1357.444

53.71712

2.31E-05

Residual

8

202.1618

25.27023

Total

10

2917.049

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Lower 95.0%

Upper 95.0%

Intercept

66.97975

4.315416

15.52104

2.96E-07

57.02839

76.93112

57.02839

76.93112

x^1

-0.65125

0.167876

-3.87933

0.004679

-1.03837

-0.26412

-1.03837

-0.26412

x^2

0.001589

0.001425

1.115218

0.297134

-0.0017

0.004874

-0.0017

0.004874

Cubic

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.986467

R Square

0.973117

Adjusted R Square

0.961596

Standard Error

3.347021

Observations

11

ANOVA

df

SS

MS

F

Significance F

Regression

3

2838.631

946.2104

84.46383

7.34E-06

Residual

7

78.41786

11.20255

Total

10

2917.049

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Lower 95.0%

Upper 95.0%

Intercept

62.09612

3.227199

19.24149

2.55E-07

54.46501

69.72724

54.46501

69.72724

x^1

0.061522

0.24184

0.254389

0.806506

-0.51034

0.633382

-0.51034

0.633382

x^2

-0.01545

0.005213

-2.96326

0.021008

-0.02777

-0.00312

-0.02777

-0.00312

x^3

0.000103

3.11E-05

3.32356

0.012703

2.99E-05

0.000177

2.99E-05

0.000177

a)

Here we can see that the equations would be as follows:-

Quartic: 66.98-0.065125x^1+0.001589x^2

Cubic: 62.10+0.061522x^1-0.01545x^2+0.000103x^3

b)

Quartic (2005): 66.98-0.065125(105)+0.001589(11025)=66.98-6.838125+17.518725=77.66

Cubic (2005): 62.10+0.061522(105)-0.01545(11025)+0.000103(1157625)=62.10+6.45981-17.518725+119.235375=170.27646

c)

In my opinion, it would be quartic because cubic is giving too high results.

Year

Percent of Men 65 and Older in Workforce (y)

x

x^1

x^2

x^3

1900

63.1

0

0

0

0

1920

55.6

20

20

400

8000

1930

54

30

30

900

27000

1940

41.8

40

40

1600

64000

1950

45.8

50

50

2500

125000

1960

33.1

60

60

3600

216000

1970

26.8

70

70

4900

343000

1980

19

80

80

6400

512000

1990

16.3

90

90

8100

729000

2000

17.7

100

100

10000

1000000

2010

20.5

110

110

12100

1331000

Quartic

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.964726

R Square

0.930696

Adjusted R Square

0.913371

Standard Error

5.02695

Observations

11

ANOVA

df

SS

MS

F

Significance F

Regression

2

2714.887

1357.444

53.71712

2.31E-05

Residual

8

202.1618

25.27023

Total

10

2917.049

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Lower 95.0%

Upper 95.0%

Intercept

66.97975

4.315416

15.52104

2.96E-07

57.02839

76.93112

57.02839

76.93112

x^1

-0.65125

0.167876

-3.87933

0.004679

-1.03837

-0.26412

-1.03837

-0.26412

x^2

0.001589

0.001425

1.115218

0.297134

-0.0017

0.004874

-0.0017

0.004874

Cubic

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.986467

R Square

0.973117

Adjusted R Square

0.961596

Standard Error

3.347021

Observations

11

ANOVA

df

SS

MS

F

Significance F

Regression

3

2838.631

946.2104

84.46383

7.34E-06

Residual

7

78.41786

11.20255

Total

10

2917.049

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Lower 95.0%

Upper 95.0%

Intercept

62.09612

3.227199

19.24149

2.55E-07

54.46501

69.72724

54.46501

69.72724

x^1

0.061522

0.24184

0.254389

0.806506

-0.51034

0.633382

-0.51034

0.633382

x^2

-0.01545

0.005213

-2.96326

0.021008

-0.02777

-0.00312

-0.02777

-0.00312

x^3

0.000103

3.11E-05

3.32356

0.012703

2.99E-05

0.000177

2.99E-05

0.000177