Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Cost analysts for Henry Blue Co. have selected the following cost drivers to pro

ID: 3201999 • Letter: C

Question

Cost analysts for Henry Blue Co. have selected the following cost drivers to project mixed costs: volume of beer produced (in hectoliters, i.e., 1hL = 100 L), total amount of raw materials used (in kilograms), number of batches, volume of water used (in hL), number of cleaning procedures performed (CIPs) and number of new products. Here is the cost data and levels of cost driver activity for 18 months.

                           Dollars of             Beer                          Raw           Number
                               Total                  Produced              Material           of                Water                                  New
Month                Overhead                   (hL)                    (kg)                 Batches                (hL)               CIPs            Products
Jan                          57,266                  890                 13,573                    54                  6,005                 67                    -
Feb                          61,020                  980                 15,013                   58                   6,588       72     1
Mar                          64,622               1,091                 16,781                   65                    7,336                81                    -
Apr                           68,630               1,212                 18,551                   73                   8,002                88     -
May                          70,652               1,262                 19,370                   75                   8,435                93                     -
Jun                          79,927               1,494                  23,182                   89                    9,940             110                    2
Jul                            82,867               1,557                  24,202                  95                  10,240             106               3
Aug                          81,748               1,528                  23,797                  94                  10,326              112                   2
Sep                          68,820               1,215                 18,537                   72                    8,284           87                    -
Oct                           66,375                1,145                17,582                    69                    7,746               85                    -
Nov                          63,767                1,072                16,369                    64                    7,168               76                    -
Dec                          62,255                1,032                15,628                    62                   6,933                77                    -
Jan                           56,838                   872                13,158                    50                   5,902                61                   1
Feb                           61,298               1,006                15,224                    60                    6,759               75                    -
Mar                           63,179               1,041                 15,763                    62                   6,990                81                   1
Apr                            66,107               1,139                 17,246                    68                   7,629                85                    -
May                           69,759               1,228                 18,593                    75                   8,205                89                   1
Jun                            76,403               1,397                 21,571                   84                   9,304               100                  2
                         $ 1,221,533             21,161               324,140              1,269              141,792            1,545                13

Required:

1. Using regression, calculate the x and y components using hL of beer produced as the independent variable anddollars of overhead as the dependent variable.
2. Do you think beer produced is an adequate driver to predict overhead? Why or why not?
3. Using regression, compute the y and x from the above table using number of batches as the independent variableand dollars of overhead as the dependent variable.
4. Which driver appears to be the best and why??
5. Assuming a projected 1,800 hL of beer for next month, compute the projected overhead cost and discuss.

Explanation / Answer

Result:

Required:

Regression Analysis

0.998

n

18

r

0.999

k

1

Std. Error

403.843

Dep. Var.

dollars of overhead

ANOVA table

Source

SS

df

MS

F

p-value

Regression

1,056,394,386.3080

1  

1,056,394,386.3080

6477.39

2.67E-22

Residual

2,609,430.6364

16  

163,089.4148

Total

1,059,003,816.9444

17  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=16)

p-value

95% lower

95% upper

Intercept

23,227.2057

562.7126

41.277

1.11E-17

22,034.3082

24,420.1033

Beer produced

37.9681

0.4718

80.482

2.67E-22

36.9680

38.9682

Regression line

dollars of overhead =23,227.2057+37.9681*Beer produced

Calculated F=6477.39,P=0.0000 which is < 0.05 level of significance.

Beer produced is an adequate driver to predict overhead.

Regression Analysis

0.994

n

18

r

0.997

k

1

Std. Error

609.682

Dep. Var.

dollars of overhead

ANOVA table

Source

SS

df

MS

F

p-value

Regression

1,053,056,426.1028

1  

1,053,056,426.1028

2832.99

1.95E-19

Residual

5,947,390.8416

16  

371,711.9276

Total

1,059,003,816.9444

17  

Regression output

confidence interval

variables

coefficients

std. error

t (df=16)

p-value

95% lower

95% upper

Intercept

25,456.5707

809.5812

31.444

8.18E-16

23,740.3352

27,172.8062

Number of Batches

601.5088

11.3011

53.226

1.95E-19

577.5517

625.4660

dollars of overhead =25,456.5707+601.5088*Number of Batches

hL of beer produced is best because R square for this 0.998 is higher than R square value of 0.994.

Predicted dollars of overhead =23,227.2057+37.9681*1800

=91569.7857

projected overhead cost =$91569.79

Regression Analysis

0.998

n

18

r

0.999

k

1

Std. Error

403.843

Dep. Var.

dollars of overhead

ANOVA table

Source

SS

df

MS

F

p-value

Regression

1,056,394,386.3080

1  

1,056,394,386.3080

6477.39

2.67E-22

Residual

2,609,430.6364

16  

163,089.4148

Total

1,059,003,816.9444

17  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=16)

p-value

95% lower

95% upper

Intercept

23,227.2057

562.7126

41.277

1.11E-17

22,034.3082

24,420.1033

Beer produced

37.9681

0.4718

80.482

2.67E-22

36.9680

38.9682