Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Cost analysts for River City Brewing Company have selected the following cost dr

ID: 446581 • Letter: C

Question

Cost analysts for River City Brewing Company have selected the following cost drivers to project mixed costs: volume of beer produced (in hectoliters, i.e., 1hL = 100 L), total amount of raw materials used (in kilograms), number of batches, volume of water used (in hL), number of cleaning procedures performed-cleanings in place (CIPs) and number of new products. Here is the cost data and levels of cost driver activity for 18 months.

Dollars of

Beer

Raw

Number

Total

Produced

Material

of

Water

New

Month

Overhead

(hL)

(kg)

Batches

(hL)

CIPs

Products

Jan

         57,266

               890

      13,573

          54

       6,005

          67

           -  

Feb

         61,020

               980

      15,013

          58

       6,588

          72

            1

Mar

         64,622

            1,091

      16,781

          65

       7,336

          81

           -  

Apr

         68,630

            1,212

      18,551

          73

       8,002

          88

           -  

May

         70,652

            1,262

      19,370

          75

       8,435

          93

           -  

Jun

         79,927

            1,494

      23,182

          89

       9,940

        110

            2

Jul

         82,867

            1,557

      24,202

          95

      10,240

        106

            3

Aug

         81,748

            1,528

      23,797

          94

      10,326

        112

            2

Sep

         68,820

            1,215

      18,537

          72

       8,284

          87

           -  

Oct

         66,375

            1,145

      17,582

          69

       7,746

          85

           -  

Nov

         63,767

            1,072

      16,369

          64

       7,168

          76

           -  

Dec

         62,255

            1,032

      15,628

          62

       6,933

          77

           -  

Jan

         56,838

               872

      13,158

          50

       5,902

          61

            1

Feb

         61,298

            1,006

      15,224

          60

       6,759

          75

           -  

Mar

         63,179

            1,041

      15,763

          62

       6,990

          81

            1

Apr

         66,107

            1,139

      17,246

          68

       7,629

          85

           -  

May

         69,759

            1,228

      18,593

          75

       8,205

          89

            1

Jun

         76,403

            1,397

      21,571

          84

       9,304

        100

            2

     1,221,533

          21,161

    324,140

      1,269

    141,792

      1,545

          13

Required:

Using regression, calculated the x and y components using hL of beer produced as the independent variable and dollars of overhead as the dependent variable.

Do you think beer produced is an adequate driver to predict overhead? Why or why not?

Using regression compute the y and x from the above table using number of batches as the independent variable and dollars of overhead as the dependent variable.

Which driver appears to be the best and why??

Assuming a projected 1,800 hL of beer for next month, compute the projected overhead cost and discuss.

Dollars of

Beer

Raw

Number

Total

Produced

Material

of

Water

New

Month

Overhead

(hL)

(kg)

Batches

(hL)

CIPs

Products

Jan

         57,266

               890

      13,573

          54

       6,005

          67

           -  

Feb

         61,020

               980

      15,013

          58

       6,588

          72

            1

Mar

         64,622

            1,091

      16,781

          65

       7,336

          81

           -  

Apr

         68,630

            1,212

      18,551

          73

       8,002

          88

           -  

May

         70,652

            1,262

      19,370

          75

       8,435

          93

           -  

Jun

         79,927

            1,494

      23,182

          89

       9,940

        110

            2

Jul

         82,867

            1,557

      24,202

          95

      10,240

        106

            3

Aug

         81,748

            1,528

      23,797

          94

      10,326

        112

            2

Sep

         68,820

            1,215

      18,537

          72

       8,284

          87

           -  

Oct

         66,375

            1,145

      17,582

          69

       7,746

          85

           -  

Nov

         63,767

            1,072

      16,369

          64

       7,168

          76

           -  

Dec

         62,255

            1,032

      15,628

          62

       6,933

          77

           -  

Jan

         56,838

               872

      13,158

          50

       5,902

          61

            1

Feb

         61,298

            1,006

      15,224

          60

       6,759

          75

           -  

Mar

         63,179

            1,041

      15,763

          62

       6,990

          81

            1

Apr

         66,107

            1,139

      17,246

          68

       7,629

          85

           -  

May

         69,759

            1,228

      18,593

          75

       8,205

          89

            1

Jun

         76,403

            1,397

      21,571

          84

       9,304

        100

            2

     1,221,533

          21,161

    324,140

      1,269

    141,792

      1,545

          13

Explanation / Answer

The regression is of the form of Y= a+bx This is solved by the method of least square after solving the the two Normal Equations y= na+bx xy=ax+bx2 Month Independent Variable (X) Dependent Variable (y) XY X2 Jan 890.00 57266.00 50966740.00 792100 Feb 980.00 61020.00 59799600.00 960400 Mar 1091.00 64622.00 70502602.00 1190281 Apr 1212.00 68630.00 83179560.00 1468944 May 1262.00 70652.00 89162824.00 1592644 Jun 1494.00 79927.00 119410938.00 2232036 Jul 1557.00 82867.00 129023919.00 2424249 Aug 1528.00 81748.00 124910944.00 2334784 Sep 1215.00 68820.00 83616300.00 1476225 Oct 1145.00 66375.00 75999375.00 1311025 Nov 1072.00 63767.00 68358224.00 1149184 Dec 1032.00 62255.00 64247160.00 1065024 Jan 872.00 56838.00 49562736.00 760384 Feb 1006.00 61298.00 61665788.00 1012036 Mar 1041.00 63179.00 65769339.00 1083681 Apr 1139.00 66107.00 75295873.00 1297321 May 1228.00 69759.00 85664052.00 1507984 Jun 1397.00 76403.00 106734991.00 1951609 Total 21161.00 1221533.00 1463870965.00 25609911.00 y= na+bx xy=ax+bx2 18a+21161b=1221533 21161a+25609911b=1463870965 After the equation we will get 380898a+460978398b=26349677370 380898 460978398 26349677370 380898a+447787921b=25848859813 380898 447787921 25848859813 13190477 b= 500817557 b= 37.96811571 a= 0.084465132 The regression Y = a+bx y= 0.084465132+37.96*X The projected cost of over head when 1800 hl is y= 0.084465132+37.96*X *1800 Projected 68328.08447 Overhead