Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Please Answer each question item (a through i) in the space provided below. A st

ID: 3295077 • Letter: P

Question

Please Answer each question item (a through i) in the space provided below.

A statistics teacher collected the following data to determine if the number of hours a student studied during the semester could be used to predict the final grade for the course. The Excel output follows the data.

Student

Hours Studying

Final Grade

1

42

92

2

58

95

3

32

81

4

39

78

5

37

75

6

51

88

7

49

85

8

45

85

Summary Output

Regression Statistics

Multiple R        0.752344

R-square         0.566022

Standard error 4.832541

Observations               8

ANOVA                       Df        SS                   MS                  F                      p-value

           Regression                  1          182.7543         182.7543         7.825578         0.03127

           Residual                      6          140.1207         23.35345

           Total                            7          322.875

          

                                   Coefficient      Standard Error                        t-stat                p-value

           Intercept          58.00609         9.755659                     5.945891         .001011

           Hours              0.608927         0.217674                     2.797424         0.03127

           a.         Determine the least-squares regression line. _______________________

b.        Interpret the value of the slope.

c. Determine the standard error of estimate ________________

           d.         Construct a 95% confidence interval for the average final grade when hours spent studying = 50

Assume that x 2 = 16069 and x = 353

           e.         Construct a 95% prediction interval for an individual y value when x = 6.5.

           f.         What percentage of the variation in y is explained by the regression line?

           g.         In testing the hypotheses H0: 1 = 0 and H1 : 1 0 what is the value of the calculated test statistic, t ?

           h.         In testing the hypotheses H0: 1 = 0 and H1 : 1 0 what is the decision rule at the 0.05 significance level?

           i.          In testing the hypotheses, H0: 1 = 0 and H1 : 1 0 what is the conclusion at the 0.05 significance level? And interpretation?

Student

Hours Studying

Final Grade

1

42

92

2

58

95

3

32

81

4

39

78

5

37

75

6

51

88

7

49

85

8

45

85

Explanation / Answer

a.         Determine the least-squares regression line. _______________________

y = 58.00609 + 0.608927 * hours

b.        Interpret the value of the slope.

for every increase in 1 hour change in y is 0.608927

c. Determine the standard error of estimate ________________

s = 4.832541

           d.         Construct a 95% confidence interval for the average final grade when hours spent studying = 50

Assume that x 2 = 16069 and x = 353

           e.         Construct a 95% prediction interval for an individual y value when x = 6.5.

           f.         What percentage of the variation in y is explained by the regression line?

R^2 = 0.566022

           g.         In testing the hypotheses H0: 1 = 0 and H1 : 1 0 what is the value of the calculated test statistic, t ?

t =2.797424         

           h.         In testing the hypotheses H0: 1 = 0 and H1 : 1 0 what is the decision rule at the 0.05 significance level?

if p-value < 0.05

we reject the null

           i.          In testing the hypotheses, H0: 1 = 0 and H1 : 1 0 what is the conclusion at the 0.05 significance level? And interpretation?

p-value = 0.03127 < 0.05

hence we reject the null and conclude that there is significant evidence that there is relation with these tow variables