Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Please Answer each question item (a through i) in the space provided below. A st

ID: 3295525 • Letter: P

Question

Please Answer each question item (a through i) in the space provided below.

A statistics teacher collected the following data to determine if the number of hours a student studied during the semester could be used to predict the final grade for the course. The Excel output follows the data.

Student

Hours Studying

Final Grade

1

42

92

2

58

95

3

32

81

4

39

78

5

37

75

6

51

88

7

49

85

8

45

85

Summary Output

Regression Statistics

Multiple R        0.752344

R-square         0.566022

Standard error 4.832541

Observations               8

ANOVA                       Df        SS                   MS                  F                      p-value

           Regression                  1          182.7543         182.7543         7.825578         0.03127

           Residual                      6          140.1207         23.35345

           Total                            7          322.875

          

                                   Coefficient      Standard Error                        t-stat                p-value

           Intercept          58.00609         9.755659                     5.945891         .001011

           Hours              0.608927         0.217674                     2.797424         0.03127

           a.         Determine the least-squares regression line. _______________________

b.        Interpret the value of the slope.

c. Determine the standard error of estimate ________________

           d.         Construct a 95% confidence interval for the average final grade when hours spent studying = 50

Assume that x 2 = 16069 and x = 353

           e.         Construct a 95% prediction interval for an individual y value when x = 6.5.

           f.         What percentage of the variation in y is explained by the regression line?

           g.         In testing the hypotheses H0: 1 = 0 and H1 : 1 0 what is the value of the calculated test statistic, t ?

           h.         In testing the hypotheses H0: 1 = 0 and H1 : 1 0 what is the decision rule at the 0.05 significance level?

           i.          In testing the hypotheses, H0: 1 = 0 and H1 : 1 0 what is the conclusion at the 0.05 significance level? And interpretation?

Student

Hours Studying

Final Grade

1

42

92

2

58

95

3

32

81

4

39

78

5

37

75

6

51

88

7

49

85

8

45

85

Explanation / Answer

a. Least Square Regression Line

y = 58.00 + 0.609 x

y = Final Grade and x = Hours Studying

b. Interpret the value of the slope = 0.609 and if we increase 1 hours of studying, then it will increase in final grade by the value of 0.61.

c. Standard error of the estimate se = 4.8325

d. 95% Confidence Interval when hours spent studying = 50

so Final Grade = 58.00 + 0.609 x 50 = 88.45

x 2 = 16069 and x = 353

95% Confidence Interval = y50 +- tn-2,0.05 sy * sqrt [1/n + (x* -xbar)2 / (n-1)sx2]

= 88.45 +- 2.447 * 4.8325 * sqrt [1/8 + (50 - 44.125)2/  492.875 ]

= 88.45 +- 5.222

= (83.23, 93.67)

f.         What percentage of the variation in y is explained by the regression line?

56.66% of the variation in y is explained by the regression line.

g. Test statistic : t = 2.797 as given in regression.

h. Decision Rule at the 0.05 significance level, so, here p - value is 0.03 so it is under significance level so we shall reject the null hypothesis. So, 1 0 .

i. We can conclude that the linear relationship is significant in nature.