Here’s a table you can use for the SD calculation! As promised, I did the first
ID: 3312813 • Letter: H
Question
Here’s a table you can use for the SD calculation! As promised, I did the first two groups for you, but you need to do the Hybrid group.
Traditional
X – M
(X – M)2
Online
X – M
(X – M)2
Hybrid
X – M
(X – M)2
96
7.7
59.29
93
7.1
50.41
96
94
5.7
32.49
78
-7.9
62.41
77
93
4.7
22.09
91
5.1
26.01
89
95
6.7
44.89
67
-18.9
357.21
80
86
-2.3
5.29
85
-.9
.81
93
80
-8.3
68.89
99
13.1
171.61
91
84
-4.3
18.49
88
2.1
4.41
94
77
-11.3
127.69
82
-3.9
15.21
92
86
-2.3
5.29
92
6.1
37.21
97
92
3.7
13.69
84
-1.9
3.61
82
M =
88.30
85.90
n – 1
9
9
(X – M)2 / n – 1
398.1 / (10 – 1) = 44.23
728.9 / (10 – 1) = 80.99
SD ( )
6.65
9.00
Compute the test statistic. I’ll even give you the table to use!
Tradition
X2
Online
X2
Hybrid
X2
96
93
96
94
78
77
93
91
89
95
67
80
86
85
93
80
99
91
84
88
94
77
82
92
86
92
97
92
84
82
n
N
X
X
X
(X)2/N
(X2)
(X2)
(X)2/n
(X)2/n
MS Between = (X)2/n – (X)2/N
MS Within = (X2) – (X)2/n
Total Sum of Squares = (X2) – (X)2/n
Mean Sum of Squares (between) = [(X)2/n – (X)2/N]/k -1
Mean Sum of Squares (within) = [(X2) – (X)2/n]/N - k
F = MS Between / MS Within =
Traditional
X – M
(X – M)2
Online
X – M
(X – M)2
Hybrid
X – M
(X – M)2
96
7.7
59.29
93
7.1
50.41
96
94
5.7
32.49
78
-7.9
62.41
77
93
4.7
22.09
91
5.1
26.01
89
95
6.7
44.89
67
-18.9
357.21
80
86
-2.3
5.29
85
-.9
.81
93
80
-8.3
68.89
99
13.1
171.61
91
84
-4.3
18.49
88
2.1
4.41
94
77
-11.3
127.69
82
-3.9
15.21
92
86
-2.3
5.29
92
6.1
37.21
97
92
3.7
13.69
84
-1.9
3.61
82
M =
88.30
85.90
n – 1
9
9
(X – M)2 / n – 1
398.1 / (10 – 1) = 44.23
728.9 / (10 – 1) = 80.99
SD ( )
6.65
9.00
Explanation / Answer
Traditional
X – M
(X – M)2
Online
X – M
(X – M)2
Hybrid
X – M
(X – M)2
96
7.7
59.29
93
7.1
50.41
96
6.9
47.61
94
5.7
32.49
78
-7.9
62.41
77
-12.1
146.41
93
4.7
22.09
91
5.1
26.01
89
-0.1
0.01
95
6.7
44.89
67
-18.9
357.21
80
-9.1
82.81
86
-2.3
5.29
85
-.9
.81
93
3.9
15.21
80
-8.3
68.89
99
13.1
171.61
91
1.9
3.61
84
-4.3
18.49
88
2.1
4.41
94
4.9
24.01
77
-11.3
127.69
82
-3.9
15.21
92
2.9
8.41
86
-2.3
5.29
92
6.1
37.21
97
7.9
62.41
92
3.7
13.69
84
-1.9
3.61
82
-7.1
50.41
M =
88.30
85.90
89.1
n – 1
9
9
9
(X – M)2 / n – 1
398.1 / (10 – 1) = 44.23
728.9 / (10 – 1) = 80.99
440.9 / (10-1) = 48.98889=48.99
SD ( )
6.65
9.00
6.999206304 =6.99
Tradition
X2
Online
X2
Hybrid
X2
96
9216
93
8649
96
9216
94
8836
78
6084
77
5929
93
8649
91
8281
89
7921
95
9025
67
4489
80
6400
86
7396
85
7225
93
8649
80
6400
99
9801
91
8281
84
7056
88
7744
94
8836
77
5929
82
6724
92
8464
86
7396
92
8464
97
9409
92
8464
84
7056
82
6724
n
10
10
10
N
30
X
883
859
891
X
2633
X
(X)2/N
6932689/30=
231089.6333
(X2)
78367
74517
79829
(X2)
232713
(X)2/n
779689/ 10 = 77968.9
737881/10 = 73788.1
793881/ 10 = 79388.1
(X)2/n
231145.1
(X)2
779689
737881
793881
MS Between = (X)2/n – (X)2/N =231145.1 – 231089.6333 = 55.4667
MS Within = (X2) – (X)2/n = 232713 – 231145.1 = 1567.9
Total Sum of Squares =(X2) –(X)2/n = 232713 –231089.6333= 1623.3667
Total Sum of Squares = MS Between + MS Within
Mean Sum of Squares (between) = [(X)2/n – (X)2/N]/k -1
= MS Between/(3 – 1 ) = 27.73335
Mean Sum of Squares (within) = [(X2) – (X)2/n]/n – k =1567.9 / ( 10 – 3) = 223.9857143
*I think it should be 'n' in the denominator and not 'N' as you specified. if you think the 'n' gives error please correct it to N.
F = MS Between / MS Within = 27.73335 / 223.9857143 = 0.1238174947
Ftab = 4.737
since Fcal < Ftab, we do not reject Ho at 5% level of significance
Traditional
X – M
(X – M)2
Online
X – M
(X – M)2
Hybrid
X – M
(X – M)2
96
7.7
59.29
93
7.1
50.41
96
6.9
47.61
94
5.7
32.49
78
-7.9
62.41
77
-12.1
146.41
93
4.7
22.09
91
5.1
26.01
89
-0.1
0.01
95
6.7
44.89
67
-18.9
357.21
80
-9.1
82.81
86
-2.3
5.29
85
-.9
.81
93
3.9
15.21
80
-8.3
68.89
99
13.1
171.61
91
1.9
3.61
84
-4.3
18.49
88
2.1
4.41
94
4.9
24.01
77
-11.3
127.69
82
-3.9
15.21
92
2.9
8.41
86
-2.3
5.29
92
6.1
37.21
97
7.9
62.41
92
3.7
13.69
84
-1.9
3.61
82
-7.1
50.41
M =
88.30
85.90
89.1
n – 1
9
9
9
(X – M)2 / n – 1
398.1 / (10 – 1) = 44.23
728.9 / (10 – 1) = 80.99
440.9 / (10-1) = 48.98889=48.99
SD ( )
6.65
9.00
6.999206304 =6.99