Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

For a Student\'s t distribution with d . f . = 10 and t = 2.990, consider the fo

ID: 3371521 • Letter: F

Question

For a Student's t distribution with

d.f. = 10

and

t = 2.990,

consider the following.

(a) Find an interval containing the corresponding P-value for a two-tailed test.

0.0010 < P-value < 0.010

0.010 < P-value < 0.020    

0.020 < P-value < 0.050

0.050 < P-value < 0.100

0.100 < P-value < 0.150

0.150 < P-value < 0.200

0.200 < P-value < 0.250

0.250 < P-value < 0.500

(b) Find an interval containing the corresponding P-value for a right-tailed test.

0.0005 < P-value < 0.005

0.005 < P-value < 0.010    

0.010 < P-value < 0.025

0.025 < P-value < 0.050

0.050 < P-value < 0.075

0.075 < P-value < 0.100

0.100 < P-value < 0.125

0.125 < P-value < 0.250

Explanation / Answer

The P-value corresponding to degrees of freedom: 10 is P(T>2.990)

(From t standard tables)

The P-value for a two tailed test is 2*P(T>2.990) = 2*0.0071 =0.0142

The P-value for a right - tailed test is P(T>2.990) = 0.0071

Thus,

For(a) , 0.010 < P-value < 0.020

For (b), 0.005 < P-value <0.010