I need the answers to numbers 6-10. REGRESSION ANALYSIS Jane Morris is studying
ID: 3395136 • Letter: I
Question
I need the answers to numbers 6-10.
Explanation / Answer
Regression Analysis
r²
0.217
n
15
r
0.466
k
1
Std. Error
0.281
Dep. Var.
y
ANOVA table
Source
SS
df
MS
F
p-value
Regression
0.2844
1
0.2844
3.61
.0799
Residual
1.0249
13
0.0788
Total
1.3093
14
Regression output
confidence interval
variables
coefficients
std. error
t (df=13)
p-value
95% lower
95% upper
Intercept
10.6665
0.1457
73.188
2.15E-18
10.3517
10.9814
x
0.0030
0.0016
1.899
.0799
-0.0004
0.0064
Predicted values for: y
95% Confidence Interval
95% Prediction Interval
x
Predicted
lower
upper
lower
upper
Leverage
150
11.1191
10.8311
11.4071
10.4476
11.7906
0.225
6).
Y=10.6665+0.003*X
7).
Slope =0.003
When size of the company increases by one unit(million), the price per share increases by 0.003.
8).
Y intercept =10.6665
When size of the company 0 unit(million), the price per share is 10.6665.
There is no practical importance to y intercept.
9).
When size =150,
Y=10.6665+0.003*150=11.1191
Predicted price per share =11.12
10).
Since the regression is not significant, F=3.61, P=0.0799, the model is not useful.
Regression Analysis
r²
0.217
n
15
r
0.466
k
1
Std. Error
0.281
Dep. Var.
y
ANOVA table
Source
SS
df
MS
F
p-value
Regression
0.2844
1
0.2844
3.61
.0799
Residual
1.0249
13
0.0788
Total
1.3093
14
Regression output
confidence interval
variables
coefficients
std. error
t (df=13)
p-value
95% lower
95% upper
Intercept
10.6665
0.1457
73.188
2.15E-18
10.3517
10.9814
x
0.0030
0.0016
1.899
.0799
-0.0004
0.0064
Predicted values for: y
95% Confidence Interval
95% Prediction Interval
x
Predicted
lower
upper
lower
upper
Leverage
150
11.1191
10.8311
11.4071
10.4476
11.7906
0.225