Please solve at least 6, indicate which case of masters theorem was used and ple
ID: 3747233 • Letter: P
Question
Please solve at least 6, indicate which case of masters theorem was used and please show all work. Problem 1 Give asymptotic upper and lower bounds for T(n) in each of the following recurrences. Assume that T(n) is constant for n s 10. Make your bounds as tight as possible, and justify your answers. (a) T(n) = 2T(n/3) + n lg n (b) T(n) 3T(n/5) +1g2n (c) T(n) = T(n/2) + 2n (d) T(n) = T(V+ (lg lg n) (e) T(n) 10T(n/3)+ 17n12 (f) T(n) = 7T(n/2)-m3 (g) T(n) = T(n/2+ + v6046 (h) T(n) T(n -2) +Ign (i) T(n) = T(n/5) + T(4n/5) + (n) (j) T(n) = Vii T(G) +100nExplanation / Answer
Masters theorem to solve a recurrence relation of the form
T(n)=aT(n/b)+(nk logpn),a>=1,b>1,k>=0 and p is a real number
1)If a>bk ,then T(n)=(nlogba)
2)If a=bk
a)If p>-1,then T(n)=(nlogba logp+1 n)
b)If p=-1,then T(n)=(nlogba loglog n)
c)If p<-1,then T(n)=(nlogba )
3)If a<bk
a)If p>=0,then T(n)=(nk logp n)
b)If p<0,then T(n)=(nk )
Given recurrence relations are
a)T(n)=2T(n/3)+nlogn
a=2,b=3,k=1,p=1
a<bk and p>0 then
T(n)=T(n)=(nk logp n)=T(n)=(n log n)
b)T(n)=3T(n/5)+log2n
a=3,b=5,k=0,p=2
a>bk then
T(n)=(nlogba) =T(n)=(nlog53)
c)This is the general case of the master theorem
if T(n)=aT(n/b)+f(n)
T(n)=(f(n))
here
a=1,b=2 (so logb a=1) and f(n)=2n. We see that
T(n)=(2n)
d)
T(n)=T(n)+(log(log(n))
here take
n=2m,m=log(n)
we get
T(2m)=T(2m)+(log(log(2m)))=T(2m/2))+(log(m))
this is of the form S(m)=S(m/2)+log(m)
a=1,b=2,k=0,p=1
then a>bk
T(n)=(mlog21×(logm)2)=((loglogn)2)
e)
T(n)=10T(n/3)+17n1.2
a=10,b=3,k=1.2,p=0
a>bk then
T(n)=(nlogba) =T(n)=(nlog310)
f)
T(n)=7T(n/2)+n3
a=7,b=2,k=3,p=0
a<bk and p>0 then
T(n)=T(n)=(nk logp n)=T(n)=(n3 log0 n)=(n3 )