Newton\'s laws of motion predict the height H of an object at time T with an ini
ID: 668405 • Letter: N
Question
Newton's laws of motion predict the height H of an object at time T with an initial velocity V and initial angle of movement A. Ignoring friction, the equation is H = sin(A)VT - 0.5gT^2 where g denotes the acceleration due to gravity. Assume the constant g = 32.174 ft/sec^2. For example, an American football thrown at an angle A of 40 degrees, with an initial velocity V of 88 ft/sac, in time T = 2 seconds is at a height of 48.7825 feet. Write a complete C++ program using a while loop that inputs the angle A in degrees and velocity V in ft/sec, and outputs the height of the object every 0.2 seconds, starting at 0.0 seconds and ending at 2.0 seconds. For example, if the inputs are 40.0 and 88.0, then the correct output are the following 11 values: 10. 6696 20. 0522 28.1478 34 . 9565 40. 4783 44 . 713 47. 6609 49 . 3217 49. 6956 48 . 7825 Note that C++ provides a built-in sine function, sin(R). However, this function works in radians, not degrees, so convert A to radians using R = A * Pl / 180; define PI=3.14159.Explanation / Answer
// Program using DEV C++ editor
#include <iostream>
#include <math.h>
using namespace std;
float degreeToRadian(float);
float PI=3.14159;
int main()
{
float g=32.174; // accelaration due to gravity
float A,R,H,V;
float T=0.0;
cout<<"Enter the Angle in Degrees:";
cin>>A;
cout<<"Enter the Velocity in ft/sec:";
cin>>V;
cout<<endl<<"Height in feets:";
while(T<=2.0)
{
R=degreeToRadian(A);
H=sin(R)*V*T-(0.5*g*pow(T,2));
T=T+0.2;
cout<<endl<<H;
}
return 0;
}
float degreeToRadian(float degree)
{
float Radian=degree *PI /180;
return Radian;
}
------------------------------------------------------------------------------------------------------------------
// Output
Enter the Angle in Degrees:40
Enter the Velocity in ft/sec:88
Height in feets:
0
10.6696
20.0522
28.1478
34.9565
40.4783
44.713
47.6609
49.3217
49.6956
--------------------------------