I know the final answer will be 5NO(g) + 3MnO4^- (aq) + 4H^+ (aq) --> 3Mn^2+ (aq
ID: 755191 • Letter: I
Question
I know the final answer will be 5NO(g) + 3MnO4^- (aq) + 4H^+ (aq) --> 3Mn^2+ (aq) + 5NO3^- (aq) + 2H2O (l).. Could someone please show process??Explanation / Answer
NO3 - (aq) + Sn 2+ (aq) --> Sn 4+ (aq) +NO(g) NO3 - (aq) --> NO(g) (first we should balance the oxygen and hydrogens if any present), so: NO3 - (aq) --> NO (g) + 2H2O then NO3 - (aq) + 4H+ --> NO (g) + 2 H2O ( then we balance the charge on both sides), so: NO3 - (aq) + 4H+ + 3e --> NO (g) + 2 H2O Now we go to the other part of this redox equation: Sn 2+ (aq) --> Sn 4+ (aq) (we do not have any oxygens or hydrogens so we start to balance the charges in both sides), so: Sn 2+ (aq) --> Sn 4+ (aq) + 2e now we put the two equation together: NO3 - (aq) + 4H+ + 3e --> NO (g) + 2 H2O Sn 2+ (aq) --> Sn 4+ (aq) + 2e so to get red from the electrons when we subtract the two equation we should make the same number of electrons in both equation so we multiply the first equation with the no 2 and the second one with the number 3 so these equations become like this: 2NO3 -(aq)+8H+ + 6e -->2NO (g) + 4H2O 3Sn 2+ (aq) -->3Sn 4+(aq) + 6e then subtract the equations then we get this: 2NO3 - (aq) + 3 Sn 2+ (aq) + 8H + --> 2NO (g) + 3 Sn 4+ + 4H2O AND NOW FOR THE SECOND EQUATION: MnO4 - (aq) + Al(s) --> Mn 2+ (aq) + Al 3+(aq) MnO4 - (aq) --> Mn 2+ (aq) balance O and H so we get : MnO4 -(aq) + 8H+ --> Mn 2+ (aq) + 4H2O then balance the charges: MnO4 - (aq) + 8H+ + 5e --> Mn 2+(aq) + 4H2O and now for the other part of this redox equation: Al (s) --> Al 3+(aq) + 3e the same idea like the previous one so we multiply the first with number 3 and the second with number 5 , then we get: 3MnO4 -(aq) + 24H+ + 15e --> 3 Mn 2+(aq) + 12 H2O 5 Al(s) --> 5 Al 3+ (aq) + 15e then subtract them to have finaly this equation: 3MnO4 - (aq) + 5 Al(s) + 24 H+ --> 3Mn 2+ (aq) + 5 Al 3+(aq) + 12 H2O to be sure that the final equation is right, recalculate the charge in both side and it should be the same.