Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Problem 17.17 Part A Calculate the percent ionization of 7.010 ?3 M butanoic aci

ID: 791921 • Letter: P

Question

Problem 17.17 Part A             Calculate the percent ionization of 7.010?3M  butanoic acid (Ka=1.510?5).          Express your answer using two significant figures.

Part B             Calculate the percent ionization of 7.010?3M  butanoic acid in a solution containing 7.510?2M  sodium butanoate.          Express your answer using two significant figures.
Problem 17.17 Problem 17.17 Part A             Calculate the percent ionization of 7.010?3M  butanoic acid (Ka=1.510?5).          Express your answer using two significant figures.

Part B             Calculate the percent ionization of 7.010?3M  butanoic acid in a solution containing 7.510?2M  sodium butanoate.          Express your answer using two significant figures.
Part B             Calculate the percent ionization of 7.010?3M  butanoic acid in a solution containing 7.510?2M  sodium butanoate.          Express your answer using two significant figures.

Explanation / Answer

Part A. Calculate the percent ionization of 7.0*10^-3 M  butanoic acid (Ka=1.5*10^-5).   

By definition, in equilibrium:

Ka = [H+][A-]/[HA]

Then

Assume that [H+] = [A-] = x … due to stoichiometry (i.e. 1 mol of H+ per each mol of A-)

Then, in equilibrium [HA] = M – x (i.e. the original concentration minus the acid in equilibrium)

Substitute

Ka = (x*x)/(M-x)

1.5*10^-5 = x*x/(7.0*10^-3-x)

solve for x (quadratic equation)

x = [H+] = 3.166*10^-4 M

[H+] = [A-] = x = 3.166*10^-4

The ionization:

% ionization = [H+] / M * 100% = (3.166*10^-4)/(7.0*10^-3) * 100% = 4.522 %

Part B. Calculate the percent ionization of 7.0*10^-3 M  butanoic acid in a solution containing 7.5*10^-2 M  sodium butanoate.   

This is a buffer

pH= pKa + log (sodium butanoate / butanoic acid)

pKa = -log(KA) = -log(1.5*10^-5) = 4.82390

substitute values

pH= 4.82390 + log ( (7.5*10^-2 ) / (7.0*10^-3))

pH = 5.85386

now,

[H+] = 10^-ph = 10^-5.85386 = 0.00000140

now, substitute

% ionization = [H+] / M * 100% = (0.00000140)/(7.0*10^-3) * 100% = 0.02 %

that is; the acid is mostly molecular