How is photosynthesis different from respiration. Please include details. Soluti
ID: 15838 • Letter: H
Question
How is photosynthesis different from respiration. Please include details.Explanation / Answer
Photosynthesis is the process by which plants, some bacteria, and some protistans use the energy from sunlight to produce sugar, which cellular respiration converts into ATP, the "fuel" used by all living things. The conversion of unusable sunlight energy into usable chemical energy, is associated with the actions of the green pigment chlorophyll. Most of the time, the photosynthetic process uses water and releases the oxygen that we absolutely must have to stay alive. Oh yes, we need the food as well! We can write the overall reaction of this process as: 6H2O + 6CO2 ----------> C6H12O6+ 6O2 Most of us don't speak chemicalese, so the above chemical equation translates as: six molecules of water plus six molecules of carbon dioxide produce one molecule of sugar plus six molecules of oxygen Plants are the only photosynthetic organisms to have leaves (and not all plants have leaves). A leaf may be viewed as a solar collector crammed full of photosynthetic cells. The raw materials of photosynthesis, water and carbon dioxide, enter the cells of the leaf, and the products of photosynthesis, sugar and oxygen, leave the leaf.Water enters the root and is transported up to the leaves through specialized plant cells known as xylem (pronounces zigh-lem). Land plants must guard against drying out (desiccation) and so have evolved specialized structures known as stomata to allow gas to enter and leave the leaf. Carbon dioxide cannot pass through the protective waxy layer covering the leaf (cuticle), but it can enter the leaf through an opening (the stoma; plural = stomata; Greek for hole) flanked by two guard cells. Likewise, oxygen produced during photosynthesis can only pass out of the leaf through the opened stomata. Unfortunately for the plant, while these gases are moving between the inside and outside of the leaf, a great deal water is also lost. Cottonwood trees, for example, will lose 100 gallons of water per hour during hot desert days. Carbon dioxide enters single-celled and aquatic autotrophs through no specialized structures. The Nature of Light White light is separated into the different colors (=wavelengths) of light by passing it through a prism. Wavelength is defined as the distance from peak to peak (or trough to trough). The energy of is inversely porportional to the wavelength: longer wavelengths have less energy than do shorter ones. The order of colors is determined by the wavelength of light. Visible light is one small part of the electromagnetic spectrum. The longer the wavelength of visible light, the more red the color. Likewise the shorter wavelengths are towards the violet side of the spectrum. Wavelengths longer than red are referred to as infrared, while those shorter than violet are ultraviolet Light behaves both as a wave and a particle. Wave properties of light include the bending of the wave path when passing from one material (medium) into another (i.e. the prism, rainbows, pencil in a glass-of-water, etc.). The particle properties are demonstrated by the photoelectric effect. Zinc exposed to ultraviolet light becomes positively charged because light energy forces electrons from the zinc. These electrons can create an electrical current. Sodium, potassium and selenium have critical wavelengths in the visible light range. The critical wavelength is the maximum wavelength of light (visible or invisible) that creates a photoelectric effect. Photosynthesis is a two stage process. The first process is the Light Dependent Process (Light Reactions), requires the direct energy of light to make energy carrier molecules that are used in the second process. The Light Independent Process (or Dark Reactions) occurs when the products of the Light Reaction are used to form C-C covalent bonds of carbohydrates. The Dark Reactions can usually occur in the dark, if the energy carriers from the light process are present. Recent evidence suggests that a major enzyme of the Dark Reaction is indirectly stimulated by light, thus the term Dark Reaction is somewhat of a misnomer. The Light Reactions occur in the grana and the Dark Reactions take place in the stroma of the chloroplasts Dark Reaction Carbon-Fixing Reactions are also known as the Dark Reactions (or Light Independent Reactions). Carbon dioxide enters single-celled and aquatic autotrophs through no specialized structures, diffusing into the cells. Land plants must guard against drying out (desiccation) and so have evolved specialized structures known as stomata to allow gas to enter and leave the leaf. The Calvin Cycle occurs in the stroma of chloroplasts (where would it occur in a prokaryote?). Carbon dioxide is captured by the chemical ribulose biphosphate (RuBP). RuBP is a 5-C chemical. Six molecules of carbon dioxide enter the Calvin Cycle, eventually producing one molecule of glucose. The reactions in this process were worked out by Melvin Calvin aerobic respiration occurs in the presence oxygen and creates a maximum of 38 ATP, while anaerobic respiration occurs in the absence of oxygen and creates a maximum of 2 ATP. aerobic respiration has both substrate level and oxidative phosphorylation while anaerobic respiration has only substrate level phosphorlyation. also, but use glycolysis. in anaerobic respiration, the final electron acceptor is an organic molecule such as pyruvate or acetaldehyde, but in respiration, the final acceptor is oxygen.