Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Particle A of mass m 0.120 kg moving with speed v 2.80 m/s along the positive x-

ID: 1864365 • Letter: P

Question

Particle A of mass m 0.120 kg moving with speed v 2.80 m/s along the positive x-direction strikes particle B, initially at rest, of mass m 0.140 kg in a glancing collision. As a result of the collision, particle A is deflected off at an angle of 30.0° with a speed of v' 2.10 m/s. a. Calculate the angle of deflection of particle B relative to the x-axis. b. Calculate the speed of particle B after the collision. c. Calculate the change of kinetic energy in the collision. d. What type of collision is this? Explain. Sou (a

Explanation / Answer

Given

two particle of masses mA= m1 = 0.120 kg, vA = u1= 2.80 m/s along the +x direction

mass mB = m2 = 0.140 kg is at rest ==> vB = u2 = 0 m/s

m1 collides with m2 so that m1 deflected off an angle of theta1_f = 30 degrees with a speed of vA' = v1 = 2.10 m/s

unknowns are vB'= v2 =? , theta2_f =?

from conservation of momentum  

m1(u1cos theta1_i+u1 sin theta1_i) + m2(u2cos theta2_i+u2 sin theta2_i) = m1(v1cos theta1_f+v1 sin theta1_f) + m2(v2cos theta2_f+v2 sin theta2_f)

here theta1_i = 0 degrees , theta2_i = 0, theta1_f = 30 degrees , theta2_f = ?

substituting the values and equating the components of momentum

0.120(2.80cos0 + 2.80 sin0)+0.14(0 +0) = 0.120(2.10cos30 + 2.10 sin30)+0.14(v2 cos theta2_f +v2sin theta2_f)

0.120 *2.8 cos0 = 0.120(2.10 cos30 )+0.140*v2 cos theta2_f ===> (0.120-0.218) = 0.140*v2 cos theta2_f -----(B)

0 = 0.120( 2.10 sin30) + 0.140*v2 sin theta2_f ====> - 0.126 = 0.140*v2 sin theta2_f ------(A)

dividing the equations (A)/(B)

- 0.126 = 0.140*v2 sin theta2_f

---------------------------------

solving for theta2_f = 52.13 degrees with respect to +x axis

the angle of deflection is theta = 52.13 degrees

b.

substituting the value of theta2_f in any equations we get v2

(A)====> - 0.126 = 0.140*v2 sin 52.13

solving for v2 = -1.1401 m/s

c.

k.e = 0.5*m*v^2

initial kinetic energy is k.e_i = 0.5(mA*vA^2+mB*vB^2) = 0.5(0.12*2.8^2+0.14*(0)^2) J = 0.4704 J

final kinetic energy is k.e_f = 0.5(mA*vA'^2+mB*vB'^2) = 0.5(0.12*2.1^2+0.14*(-1.1401)^2) J = 0.3556 J

d.

so the k.e s are not equal means the collision is inelastic collision